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Abstract

In the design of voting rules, there are three intuitively desirable properties that one might
reasonably expect such a rule to fulfil:

• A voting rule should treat every voter and any alternative on the ballot equally.

• The result should satisfy the voters as far as possible; i. e. there should be no other
result that is obviously better for everyone.

• No voter should be able to obtain an advantage by lying about her preferences.

These intuitively desirable properties have formal counterparts by the name of Anonymity
and Neutrality, Efficiency, and Strategy-Proofness, respectively. It is well-known that the last
two are in some way in conflict to one another – fulfilling both of them is often not possible
or imposes great restrictions.

This work focuses on the setting of randomised voting with weak preferences (i. e. voters
may submit preferences with ties), particularly on previous work by Brandl et al., who used
computerised search and SMT solvers to prove a conjecture by Aziz et al. that no anonymous
and neutral randomised voting rule (known as Social Decision Scheme) can fulfil the notions
of both SD-Efficiency and SD-Strategy-Proofness. My work consists of a fully mechanised
formal proof of this result using the interactive theorem prover Isabelle and, based upon
this, a human-readable pen-and-paper proof.
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Introduction

1 Introduction

Efficiency and Strategy-Proofness are two important qualities of a voting rule: Efficiency states
that the result should be optimal in the sense that one cannot give one voter amore favourable
result without giving another voter a less favourable result, i. e. there is no way to truly
improve the result in a way that all voters agree with. Strategy-Proofness states that no voter
should have an incentive to lie, i. e. it must not be possible to achieve a better result by
misrepresenting one’s preferences. There are many different variants of Efficiency and
Strategy-Proofness, depending on what is considered a better result.
This work focuses on randomised voting rules known as Social Decision Schemes (SDS),

which do not return a single winner but a probability distribution over possible winners. To
someone unfamiliar with Social Choice Theory, this may seem strange – why should the ‘best’
outcome be chosen randomly? The reason is that choosing a single winner deterministically
is not always possible in a reasonable way. If half of the voters prefer a over b and the others
prefer b over a, who should be the winner? Indeed, the well-known Gibbard–Satterthwaite
theorem [Gib73; Bra+16] states that a deterministic voting rule that returns a single winner
must exhibit at least one of the following undesirable behaviours if there are at least three
alternatives on the ballot:

Dictatorial There is one voterwho can determine thewinner nomatterwhat the preferences
of the remaining voters are.

Imposing There is one alternative which can never win, no matter what the voters do.

Manipulable There is at least one situation where a voter has an incentive to lie.

Randomisation is an obvious way that one may consider to solve this problem: if half of the
voters prefer a and the others prefer b, one can simply toss a coin to resolve the tie.

Unfortunately, randomisation does not solve all problems. As Gibbard [Gib77; Nan98]
has also shown: if one demands, quite reasonably, that voting rules be anonymous (i. e. they
treat all voters the same), then the only SDS that satisfies ex-post-Efficiency (a relatively
weak kind of efficiency) and something known as strong SD-Strategy-Proofness is the rule
of Random Dictatorship. This rule chooses a voter uniformly at random and decides that that
voter’s most-preferred alternative wins. This shows that even in the randomised setting,
Efficiency and Strategy-Proofness are difficult to combine.

In this result by Gibbard, voters are required to have linear ballots, i. e. they need to submit
their preferences as a list in order of decreasing preference with no ties allowed. In this
work, we shall consider a more liberal setting where ties are allowed. The goal is to prove a
conjecture by Aziz et al.: that any anonymous and neutral SDS (i. e. that treats all voters and
alternatives equally) in this setting violates either SD-Strategy-Proofness or SD-Efficiency.
SD , in this context, stands for Stochastic Dominance, which is one particular way to define
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Introduction

whether the probability distribution returned by the SDS is preferred to another by a voter
or not.
This conjecture was proven by Brandl et al. using a computer program that searches the

space of preference profiles (i. e. ballots) of four voters and four alternatives and uses an SMT
solver to check the consistency of the four conditions – Anonymity, Neutrality, SD-Efficiency,
and SD-Strategy-Proofness – for ‘interesting’ sets of preference profiles. If an inconsistency
is found, that proves that no such SDS can exist, and one can then easily show that no SDS
for more voters or alternatives exists.
They did find such a set of profiles, but at that point, the ‘proof’ is merely of the form

that a computer program says ‘This is unsatisfiable’. While some SMT solvers can output a
proof of the unsatisfiability, these proofs can again only be checked effectively by computers,
since they are much too large and low-level for humans to read – so in the end, one still has
to trust the correctness of the proof checker. This can be made less problematic by using a
number of different SMT solvers to verify the result independently, but it is perhaps still not
very satisfying to some mathematicians.

However, perhaps more importantly, it must be noted that the process of inspecting a set
of profiles, deriving the set of conditions that arise from it, and translating them into the
format of SMT was done by an unverified Java program. A bug in this program could easily
lead to an incorrect proof, and past experience shows that unverified computer code used in
mathematical proofs does often contain bugs that can potentially threaten the soundness of
the proof (cf. Flyspeck by Hales et al. [Hal+15] and the Lorentz Attractor by Tucker [Tuc99]).
The Java program by Brandl et al. outputs enough information on each condition for a human
to be able to check the correctness of each of them, but considering that the SMT input
contains 94 non-trivial conditions, this would still be a time-consuming and error-prone
task for a human.
The goal of this project is therefore to address these two problems and increase the

confidence in the validity of this proof by

• using the interactive theorem prover Isabelle to develop a fully machine-checked
version of the entire proof, including the parts previously done by the Java program,
the SMT solver, and informal pen-and-paper reasoning.

• developing a ‘human-readable’ version of the SMT proof, i. e. a proof that is both
detailed and structured enough to enable a human to verify the validity of each step.

Both of these goals were achieved, and the formal Isabelle/HOL proof of the impossibility
result [Ebe16b] and the required definitions and facts about Social Choice Theory [Ebe16a]
are available in the Archive of Formal Proofs, which is a peer-reviewed repository of Isabelle/
HOL proof developments that is continuously maintained by the Isabelle developers to
ensure compatibility with future Isabelle releases despite the extensive changes to the
infrastructure and the background theory with every new Isabelle release.
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1.1 Related Work

I will now give a – probably incomplete – list of some important related work. In doing so, I
will use some terminology that was not defined yet; some of it is defined in Section 3.

Bogomolnaia and Moulin [BM01] proved that anonymity, SD-Efficiency and strong SD-
Strategy-Proofness are incompatible for Random Assignments. Since a Random Assignment
can be constructed from an SDS (albeit on more alternatives), this implies that these proper-
ties are also inconsistent for SDSs.

Aziz et al. [ABB13] proved that this also holds forweak SD-Strategy-Proofness if restricted
to majoritarian SDSs, i. e. SDSs that only depend on the pair-wise majority graph of the
preference profile. A stronger result that allows the SDS to depend on the weighted majority
graph followed [ABB14a], as well as related results for all SDSs, but with stronger notions
of Efficiency and Strategy-Proofness. [ABB14a]
Brandl et al. [BBS16] then proved that there exists no anonymous and neutral SDS for

four voters and alternatives that coincides with Random Dictatorship on strict preferences
and satisfies both SD-Efficiency and weak SD-Strategy-Proofness; however, the lifting of
this result to more than four voters and alternatives requires the additional restriction that
the SDS ignores fully indifferent voters. This assumption is not present in the original paper;
I discovered that it is necessary while trying to formalise the proof in Isabelle/HOL. The
authors have confirmed this issue in personal communication and proposed the solution of
adding the assumption about ignoring fully indifferent voters.
Finally, Brandl et al. [BBG16] proved the incompatibility of SD-Efficiency and weak SD-

Strategy-Proofness for anonymous and neutral SDSs using SMT solvers – without the addi-
tional problematic assumption about Random Dictatorship. Their work forms the basis for
this project, as this is the theorem that will be proven formally in this work.

In the course of this work,many important notions fromRandomised Social Choice Theory
have been developed in Isabelle and some important theorems about them have been proven
in a fully formal andmachine-checkedway – probably for the first time. These developments
are also available in the Archive of Formal Proofs [Ebe16a] and can be used for similar projects
in the future.

1.2 Outline

I will nowgive a brief outline of the remainder of this thesis: Section 2 describes the tools used
in this project: Isabelle/HOL, Z3, and QSopt_ex. Next, Section 3 defines the basic notions
from Social Choice Theory that we will use and gives proofs for the basic facts required
for the main proof. Section 4 describes the contributions of this work: The formalisation of
Social Decision Schemes in Isabelle/HOL in Section 4.1, the Isabelle/HOL proof automation
tools that form the verified counterparts to the Java program by Brandl et al. in Sections
4.2 and 4.3, and the human-readable proof of the main impossibility result in Section 4.4.
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Finally, Section 5 summarises the results that were achieved and the lessons that were drawn
from them, and the Appendix gives a list of all the preference profiles required by the proof
and the facts derived from them with a justification for each of them.

2 Utilised Tools

I will now give a brief overview of the three tools that were used in this project.

2.1 Isabelle

Isabelle is a generic interactive theorem prover. Interactive means that the prover does not
find the proof by itself like an automated theorem prover – the user must give it a sequence
of steps to follow and the prover’s automation fills in the gaps. This allows proofs of more
complex theorems that are outside the scope of fully-automated theorem provers. Generic
means that it supports different kinds of object logics, such as first-order logic, higher-order
logic, and Zermelo–Fraenkel set theory. However, these days, Isabelle is mostly used in the
form of Isabelle/HOL, i. e. with higher-order logic. The HOL of Isabelle/HOL is a typed
logic with functions as first-class values that supports a simple form of polymorphism and
Haskell-style type classes. Isabelle/HOL also provides many proof automation tools and
mechanisms for the definition of e. g. recursive functions, inductive predicates, and recursive
datatypes and co-datatypes.

The Isabelle distribution contains a large library of formalised general-purpose mathem-
atics in HOL, including:

• natural numbers, integers, real and complex numbers

• algebraic type classes such as groups, rings, fields, vector spaces

• topology, limits, and infinite sums

• basic number theory and combinatorics

• univariate and multivariate real and complex analysis

• measure theory and probability theory

More specialised results and/or very large formalisations – such as model-checking
algorithms, Landau symbols, the Central Limit Theorem – are available in a peer-reviewed
online repository known as the Archive of Formal Proofs (AFP). Like the Isabelle distribution,
the AFP is maintained by the Isabelle developers to ensure that its entries remain compatible
with new Isabelle releases despite the fact that both the system itself and the background
library change rapidly with each release.
One of the great advantages of Isabelle is the proof language Isar, which allows users to

write structured, quasi-human-readable proofs instead of proof scripts consisting of proof
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tactic invocations. The structured style of Isar is much closer to the way a humanwouldwrite
a proof, although most Isar proofs are still far away from being understandable by someone
unfamiliar with theorem provers. One reason for this is that many things that are dismissed
as trivial in a pen-and-paper proof need to be made explicit in a formal proof, and often,
concepts must be defined differently for technical reasons. Still, the reader is encouraged to
have a look at the Isabelle/HOL proof of the main result with the Isabelle/jEdit IDE.

2.2 Z3

Z3 is a solver for Satisfiability Modulo Theories (SMT). The basic idea of this approach is to
extend first-order Boolean satisfiability problems by replacing the Boolean variables in it
with expressions in other logics, ideally logics with efficient decision procedures – such as
uninterpreted functions or linear arithmetic. In practice, SMT solvers performwell mostly on
quantifier-free formulæ. Fortunately, the problems that we shall look at are all quantifier-free
linear real arithmetic (QF_LRA).

Z3 is integrated into Isabelle via the smt proof method [Böh09], which translates Isabelle/
HOL goals into the SMTlib format – withmuch pre-processing, since Isabelle/HOL supports
many features that do not exist in SMT, such as higher-order functions and polymorphism –
and attempts to reconstruct an Isabelle proof from the Z3 proof. It should be noted that Z3
is one of the few SMT solvers that can produce proofs. Note that by Isabelle proof, we do not
mean actual Isabelle proof text: smt does not produce Isabelle code; it constructs Isabelle
theorems by emulating the Z3 proof rules with basic logical inference. Like the Z3 proofs,
these reconstructed proofs are very large and low-level and therefore not human-readable.

2.3 QSOpt_ex

QSopt_ex [Esp06; App+07] is a Linear Programming solver (written in C) that uses exact
arithmetic, i. e. it outputs the exact optimal solutions as rational numbers without any
rounding errors. It was developed by Applegate et al. using their non-exact solver QSopt as
a basis and uses a combination of fast, non-exact floating point operations and exact rational
computations that use GMP arbitrary-precision rational numbers.
However, I do not use this version of QSopt_ex since I was unable to compile the code.

Fortunately, there is a fork by Jon Lund Steffenson [Ste14] that provides a number of im-
provements, particularly to the build system. I created rudimentary bindings to interface
with this version of QSopt_ex from Isabelle/ML by writing the problems into a problem
description file in the LP format, invoking QSopt_ex on it, and parsing the result file.
Since the problems arising in the context of this work are very small, a simple Linear

Programming solver written directly in Isabelle/ML would be a preferable solution and
may be of interest as future work.
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2.4 Trustworthiness

In some sense, Isabelle is the only one of the three tools that is still important in the final
result: While the development process of the proof required heavy use of the other two
external tools – the SMT solver Z3 (see Section 2.2) and the exact Linear Programming
solver QSopt_ex (see Section 2.3) – we do not have to trust either of them. At any stage of the
process, the proofs of the results presented here were fully machine-checked by the Isabelle
kernel down to the axioms of the logic:

• Z3 was used in the form of the Isabelle proof method smt [Böh09], which translates an
Isabelle goal into the SMTlib format, calls Z3, and constructs a (non-human-readable)
Isabelle proof from the Z3 proof object. Therefore, proofs using smt are no less trust-
worthy than ordinary Isabelle proofs.

• QSopt_ex is used to solve linear programs arising in the context of Efficiency conditions,
both to find and prove the conditions. The optimal assignment of a linear program
(corresponding to a lottery of alternatives) is imported into Isabelle as a witness and
the proof is then carried out within Isabelle using that witness.

However, even though we do not trust these third-party tools, using them in the Isabelle
proof introduces a dependency on them. Since they are not under our control and may
become unavailable in the future or change in ways that make them incompatible with the
Isabelle interface, I have fully removed all dependencies on these tools in the final proof by

• replacing the smt proof with a fully structured Isar proof using ‘regular’ Isabelle proof
methods

• writing down the inefficient supports to be proved alongwith their witnesses explicitly
in the proof document instead of computing them anew every time.

Therefore, while Z3 and QSopt_ex were instrumental in developing the Isabelle proof, the
final version of the proof does not require them anymore.

As for Isabelle, its trustworthiness is due to the following principle: Simply put, the only
part of Isabelle that can produce theorems is the inference kernel. Any fact that is proven at any
point needs to be reduced to basic inferences or axioms of the object logic (HOL in our case)
and this is checked by the kernel. All of Isabelle’s sophisticated proof automation machinery
as well as the automation that was developed in this thesis is essentially untrusted code; a
bug in one of these components can never lead to inconsistencies.
The inference kernel is still a sizeable piece of software, but certainly much smaller and

more rigorously-tested than the remainder of Isabelle. Also, over the course of the last two
decades, some Isabelle developers have attempted to prove the relative consistency of the
Isabelle kernel (modulo possible implementation mistakes); the most recent one is the work
by Kunčar and Popescu [Kun15; KP15].
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3 Preliminaries

Let us now turn to the concepts of Social Choice Theory that are required to state and prove
the main result. Everything in this section is essentially Social Choice Theory folklore; all
of the results are well-known and were not invented by me. However, in most cases, the
Isabelle/HOL formalisation is probably the first formal and machine-checked version of the
definitions and theorems.

Now, first of all, we need to define the basic setting for the remainder of this work: What
assumptions do we have about the alternatives, the voters (which will, from now on, be
called agents) and their preferences?
We will consider elections1 consisting of an agenda – a non-empty finite set of alternatives

– and an electorate – a non-empty finite set of agents. Each agent has preferences over the
alternatives, which are modelled as relations. The goal is now to devise a voting rule that
looks at the combined preferences of all the agents (known as a preference profile) and
determines the winning alternative.

As mentioned in the introduction, in this work, we shall focus on a particular class of ran-
domised voting rules known as Social Decision Schemes. These return a lottery of alternatives,
i. e. a discrete probability distribution over winning alternatives. I will use ∆(A) to denote
the set of lotteries over the set A.
We denote the set of agents with N = {1 . . . n} and the set of alternatives with A and

|A| = m. Preference profiles arewritten asR, and the preference relation of the i-th candidate
in a profile R is written as �R(i), where x �R(i) y means ‘x is at least as good as y in the
opinion of voter i.’ In our setting, the relations �R(i) will always be required to be total
preorders, i. e.

Reflexive: x �R(i) x for any x ∈ A.

Transitive: if x �R(i) y and y �R(i) z for any x, y, z ∈ A, then also x �R(i) z.

Total: for any x, y ∈ A, at least one of x �R(i) y and y �R(i) x holds.

� Note that we consider weak preferences, so the relations do not have to be antisymmetric, i. e.
x �R(i) y and y �R(i) xmay both hold even if x 6= y.

If x �R(i) y and y �R(i) x, we say that i is indifferent between x and y and write this as
x ∼R(i) y. Since ∼R(i) is an equivalence relation, it gives rise to equivalence classes, which
we call the indifference classes of R(i).

It is obvious that any finite total preorder can be written uniquely as a weak ranking: a
list of its indifference classes in order of decreasing preference (i. e. best alternatives first).
This format will be used to specify preference profiles both in this work and in the formal
Isabelle/HOL proof text.
1The term election is rather non-standard, but it was convenient in the formalisation: It is simply the combination
of an electorate and an agenda. It does not yet contain the preferences of the agents or a voting rule.
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3.1 Anonymity and Neutrality

The most obvious demand that one may have of a voting rule is that it is not biased, i. e.
it should treat all agents and all alternatives the same. This is captured formally as the
requirement that permuting the agents or alternatives does not change the result. For the
agents, this is called Anonymity; for the alternatives, it is called Neutrality.

Definition 1 (Anonymity). An SDS f is anonymous if, for any permutation π : N → N :

f(R ◦ π) = f(R)

Definition 2 (Permuting Relations and Profiles). For a relation � on A and a permutation
σ : A→ A, we define the permuted relation �σ as:

x �σ y ←→ σ−1(x) � σ−1(y)

It is clear that if � is a (total) preorder, then �σ is again a (total) preorder.
For a finite total preorder, the weak ranking of �σ can easily be obtained from the weak ranking

of � by renaming all elements with σ; e. g. for σ = (a b c d) and � = ({a}, {b}, {c, d}), we have
�σ = ({b}, {c}, {d, a}).

For a preference profile R = (R(1) . . . R(n)) and a permutation σ of the alternatives, we then
define the permuted profile Rσ = (R(1)σ . . . R(n)σ).

Definition 3 (Neutrality). We say that an SDS f is neutral if, for any permutation σ : A → A

and any alternative x ∈ A:
f(Rσ)(σ(x)) = f(R)(x)

i. e. when renaming the alternatives, the output lottery is the same as the original lottery, but with
all alternatives renamed accordingly.

3.2 Pareto Preference

An interesting situation in an election is when all agents agree on something: If all agents
think that x is at least as good as y, we say that x is (weakly) Pareto-preferred to y. Formally:

Definition 4 (Pareto preference). For a preference profile R, we define the Pareto-preference re-
lation as:

x �Pareto(R) y ←→ ∀i∈N. x �R(i) y

The strict part of this relation is also interesting: x �Pareto(R) y means that all agents think
that x is at least as good as y, and at least one agent thinks that x is strictly better than y. We
than say that x is strongly Pareto-preferred to y, or that y is Pareto-dominated by x. We also call
y a Pareto loser. Intuitively, a Pareto loser is an undesirable outcome in an election, since one

9
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can make one agent better off without making any other agent worse off by simply returning
the Pareto-dominating alternative instead.
More generally, one can see Pareto as a function that sends a family of preorders (i. e. a

tuple/set/multiset of preorders) to a single preorder. This view will be convenient for the
definition of SD-Efficiency.

� The Pareto preorder of a family of preorders is not total, even for a family of total preorders
– unless the family agrees on everything, which is surely too much to expect.

3.3 Stochastic Dominance

For the definition of the concepts of Efficiency and Strategy-Proofness, we will require a way
to determine whether an agent prefers one outcome of the election to another. Since our
outcomes are not single alternatives, but lotteries over alternatives, we need a way to lift the
agents’ preferences over alternatives to preferences over lotteries. Essentially, we are looking
for a function that sends a preorder on a set A to a preorder on ∆(A). Such a function is
called a ‘lottery extension’:

One such lottery extension is Stochastic Dominance (SD). The informal definition of this is
the following:

‘A lottery p is considered at least as good as a lottery q if for all alternatives x ∈ A,
the probability of getting a result that is at least as good as x in p is greater than
or equal to the probability of getting something at least as good as x in q.’

More formally:

Definition 5 (Stochastic Dominance). For a given preorder � on A, we define the associated
Stochastic Dominance preorder SD(�) ⊆ ∆(A)×∆(A) as

p �SD q ←→ ∀x∈A. Pp({y ∈ A | y � x}) ≥ Pq({y ∈ A | y � x})

Utilitarian View on Stochastic Dominance. It turns out that this definition is, in fact,
equivalent to another perhaps more intuitive definition using utility functions. A utility
function assigns to any alternative a real number that indicates how much utility the agent
derives from this alternative. A higher utility corresponds to a more preferred alternative.

Definition 6. A von Neumann–Morgenstern (vNM) utility function for alternatives A is a func-
tion u : A→ R. We say that u is consistent w. r. t. a preference relation � if

x � y ←→ u(x) ≥ u(y) .

In particular, note that the preference is strict iff the inequality on u is strict, and there is an
indifference between two alternatives iff they have the same utility.

10
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The informal formulation of the utilitarian view of Stochastic Dominance is then [ABB14b]:

‘A lottery p is considered at least as good as a lottery q if for all von Neumann–
Morgenstern utility functions u consistent with �, the expected utility w. r. t. p is
at least as high as the expected utility w. r. t. q.’

Formally:

Theorem 1 (Utilitarian view of Stochastic Dominance). Let A be a finite non-empty set, �
a total preorder on A, and vNM(�) ⊆ RA the set of all vNM utility functions consistent with �.
Then:

p �SD q ←→ ∀u∈vNM(�). Ep[u] ≥ Eq[u]

To prove this, we first prove the following auxiliary fact on expected utilities and indifference
classes:

Lemma 2. Let � be a total preorder on the finite non-empty set A, p∈∆(A), and u a vNM util-
ity function that is consistent with �. Furthermore, let Ii . . . Il be the weak ranking of �, i. e. the
descending sequence of its indifference classes. Then:

Ep[u] = u(Il) +
l−1∑
i=1

Pp{y∈A | y � Ii}(u(Ii)− u(Ii+1))

Proof. First of all, note that the expressions u(Ii) are well-defined, since all alternatives in
an indifference class have the same utility. For an alternative y∈A, we write y � Ii to mean
‘y is at least as good as the alternatives in Ii’. Note that if i < l, we have y � Ii ←→ y � Ii+1.
The proof is then a simple telescoping argument:

Ep[u] =
∑
x∈A

p(x)u(x) =

l∑
i=1

Pp(Ii)u(Ii) =

=
l∑

i=1

Pp({y∈A | y � Ii} \ {y∈A | y � Ii})u(Ii) =

=

l∑
i=1

Pp{y∈A | y � Ii}u(Ii)−
l∑

i=1

Pp{y∈A | y � Ii}u(Ii) =

= Pp{y∈A | y � Il}︸ ︷︷ ︸
= 1

u(Il) +
l−1∑
i=1

Pp{y∈A | y � Ii}u(Ii)−

Pp{y∈A | y � I0}︸ ︷︷ ︸
= 0

u(I0) +
l∑

i=2

Pp{y∈A | y � Ii}u(Ii) =

= u(Il) +
l−1∑
i=1

Pp{y∈A | y � Ii}u(Ii)−
l−1∑
i=1

Pp{y∈A | y � Ii+1︸ ︷︷ ︸
y� Ii

}u(Ii+1)

11
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= u(Il) +
l−1∑
i=1

Pp{y∈A | y � Ii}(u(Ii)− u(Ii+1))

We can now prove Theorem 1:

Proof.
For the −→ direction, assume p �SD q as defined initially. Let I1, . . . , Il be the weak ranking
of �. We then have:

Ep[u]
Lemma 2

= u(Il) +

l−1∑
i=1

Pp{y∈A | y � Ii}(u(Ii)− u(Ii+1))
p �SD q

≥

≥ u(Il) +
l−1∑
i=1

Pq{y∈A | y � Ii}(u(Ii)− u(Ii+1))
Lemma 2

= Eq[u]

Now, for the←− direction, assume

∀u∈vNM(�). Ep[u] ≥ Eq[u] . (∗)

Let x ∈ A. We now need to show that

Pp{y ∈ A | y � x} ≥ Pq{y ∈ A | y � x} .

Ideally, we would like to choose the utility function

u(y) :=

1 if y � x

0 otherwise

since the expected value of u is then precisely the probability that y � x. However, this u is
not consistent with �, since u assigns the same utility of 1 to all alternatives that are at least
as good as x and the same probability 0 to all those that are not, i. e. alternatives that are
ranked equally with x receive the same utility as alternatives that are strictly better than x.
The idea now is to make u consistent with � by introducing a small bias towards better

alternatives and letting the magnitude of this bias tend to 0. To do this, we consider the
weak ranking I1 . . . Il of � and define i(y) to be the index of y in the weak ranking, i. e. the
unique i such that y ∈ Ii. Now define the family of utilities

uε(y) := u(y) + ε(l − i(y))

12
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for any ε > 0. It is clear that this is a vNM utility function that is consistent with �. Then:

Pq{y ∈ A | y � x} ≤
∑
y�x

q(y) + ε
∑
y∈A

(l − i(y))q(y) = Eq[uε]
(∗)
≤

≤ Ep[uε] =
∑
y�x

p(y) + ε
∑
y∈A

(l − i(y))p(y) ≤
∑
y�x

p(y) + ε · l =

= Pp{y ∈ A | y � x}+ ε · l

Since l is fixed and this holds for all ε > 0, we can conclude

Pp{y ∈ A | y � x} ≥ Pq{y ∈ A | y � x}

by letting ε tend to 0.

A non-trivial consequence of this is the following interpretation of ‘not strictly SD-preferred’:

Theorem 3. Let A be a finite non-empty set, � a total preorder on A, then:

p �SD q ←→ ∃u∈vNM(�). Ep[u] ≤ Eq[u]

Proof. Omitted since this fact is not required for the results in this work. (There is, however,
a machine-checked Isabelle proof)

Corollary 4.
p �SD q ←→ ∃u∈vNM(�). Ep[u] < Eq[u]

p �SD q ←→ ∀u∈vNM(�). Ep[u] > Eq[u]

p ‖SD q ←→ ∃u1, u2∈vNM(�). Ep[u1] > Eq[u1] ∧ Ep[u2] < Eq[u2]

where ‖ denotes incomparability.

These theorems and corollaries now imply the following justification of the concept
of Stochastic Dominance: If we assume that agents have utility functions and attempt to
maximise their expected utility, the agent will always choose p over q if p �SD q holds.

� Note the characterisation of ‖SD in Corollary 4. This shows that SD is usually not total, even
if the original preorder on alternatives was total.

Example 1. For the set of alternativesA = {a, b, c} and the preference order a � b � c, the lotteries
b and 1/2 a+ 1/2 c are incomparable.

Singleton lotteries and SD. We can also prove the following interesting special case
of Stochastic Dominance where one of the lotteries is a singleton lottery (i. e. its support
consists of only one alternative):

13
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Corollary 5. Let � be a preorder on the (not necessarily finite and possibly empty) set A. Let p be
a lottery on A and x ∈ A. Then

x �SD p←→ ∀y∈supp(p). x � y

p �SD x←→ ∀y∈supp(p). y � x

where the x on the left-hand side of the equivalence is the singleton lottery that returns x almost-
surely.

Proof. Omitted. (As always, there is an Isabelle/HOL proof)

3.4 Efficiency

We now define the notion of Efficiency. The intuition behind Efficiency is the following: if the
outcome p (in our case: a lottery) of an election is such that there exists another outcome q
that is strictly ‘better’ – in some specific sense – then the voting rule should not have returned
p in the first place, since there are obviously better choices (such as q).

The question is: What does it mean for one lottery to be better than another? There are a
number of ways to define this.

3.4.1 Ex-Post-Efficiency

One obvious case where a lottery can be considered inefficient is when it contains Pareto
losers: By definition, if x is a Pareto loser, there is another alternative y such that all agents
consider y to be at least as good as x and at least one voter considers y to be strictly better
than x. Therefore, simply returning y instead of x yields an outcome that can reasonably be
described as strictly better for that one agent and at least as good for all other agents.

Definition 7. A lottery is called ex-post-efficient if it has no Pareto losers in its support. An SDS
is called ex-post efficient if, for any preference profile R, it returns a lottery that is ex-post-efficient
w. r. t. R.

3.4.2 SD-Efficiency

Another natural way to compare lotteries is to use lottery extensions. Recall that a lottery
extension lifts an agent’s preference relation on alternatives to a preference relation on lotteries.
If we now combine all of these preference relations on lotteries into a single relation, we can
compare two results of an election. The obvious choice for this is Pareto dominance – i. e.
we consider a lottery at least as good as another when all agents agree that this is the case.
This can be captured formally as follows:

Definition 8 (SD-Efficiency). A lottery p is called SD-efficient w. r. t. a profile R if

@q∈∆(A). q �Pareto(SD◦R) p .

14
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(Recall that R is a function that maps an agent to her preference relation, and SD is a function that
maps a relation to a relation on lotteries. Then SD ◦R is a family of preorders on lotteries, and Pareto
is a function that sends families of preorders to preorders.)

Stated more explicitly, this means:

@q∈∆(A). (∀i∈N. q �SD(R(i)) p) ∧ (∃i∈N. q �SD(R(i)) p) .

An SDS is then called SD-efficient if, for any preference profile R, it returns a lottery that is
SD-efficient w. r. t. R.

Corollary 4 then implies the following characterisation of SD-Efficiency:

Corollary 6. A lottery p is SD-efficient iff there exists no other lottery q that yields at least the same
expected utility for all agents and strictly more utility for at least one agent, no matter what their
utility functions are.

In other words: For any other lottery q, either

• q yields less expected utility for at least one agent and one particular utility function, or

• p and q yield the same expected utility for all agents, no matter what their utility functions
are (i. e. p and q are equivalent modulo the indifference classes of the agents).

SD-Efficiency and supports. An interesting property of SD-efficiency is that it does not
depend on the exact probabilities of the lottery at all, but only on the support of the lottery.
To show this, we first look at the following characterisation of SD-inefficiency:

Theorem 7. Let R be a preference profile and p ∈ ∆(A) an SD-inefficient lottery w. r. t. R. Then
all lotteries p′ ∈ ∆(A) with supp(p′) ⊇ supp(p) are also SD-inefficient w. r. t. R.

Proof. Since p is inefficient, there exists a lottery q with q �Pareto(SD◦R) p. We let

ε := min

{
p′(x)

p(x)− q(x)

∣∣∣∣x ∈ A, p(x) > q(x)

}
.

Note that the set is non-empty since p 6= q. Next, we define

q′(x) := p′(x)− ε(p(x)− q(x)) .

Since supp(p) ⊆ supp(p′) and A is finite, it is clear that ε > 0. We then have q′(x) ≥ 0: if
p(x) ≤ q(x), this is obvious; if p(x) > q(x), we have, by construction, ε(p(x)− q(x)) ≤ p′(x)

and therefore also q′(x) ≥ 0. Moreover, we have∑
x∈A

q′(x) =
∑
x∈A

p′(x)− ε
∑
x∈A

p(x) + ε
∑
x∈A

q(x) = 1− ε+ ε = 1
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Therefore, q′(x) is a well-defined lottery. For any vNM utility function u, the expected utility
w. r. t. q′ is:

Eq′ [u] = Ep′ [u] + ε(Eq[u]− Ep[u]) (∗)

Since q �Pareto(SD◦R) p, we know that for any agent i and any vNM utilities u consistent
with R(i), Eq[u] ≥ Ep[u]. Therefore, due to ε > 0 and (∗), we also have Eq′ [u] ≥ Ep′ [u] and
therefore q′ �Pareto(SD◦R) p

′.
Moreover, since q �Pareto(SD◦R) p, there exists an agent i and a vNMutility u consistentwith

R(i) such that Eq[u] > Ep[u]. With ε > 0 and (∗), we then have Eq′ [u] > Ep′ [u] and therefore
q′ �Pareto(SD◦R) p

′. In conclusion, we have shown that q′ �Pareto(SD◦R) p
′ and therefore p′ is

not SD-efficient w. r. t. R.

Corollary 8. A lottery p∈∆(A) is SD-efficient iff all lotteries with the same support are SD-
efficient.

Definition 9 (SD-Efficiency of supports). Corollary 8 justifies speaking of efficient and inefficient
supports. We call a support SD-efficient (resp. SD-inefficient) if the lotteries with this support are
SD-efficient (resp. SD-inefficient).

SD-Efficiency and ex-post-Efficiency. We can now also examine how SD-Efficiency
relates to Pareto losers and ex-post-Efficiency:

Corollary 9. Given a preference profile R and an alternative x, the following four statements are
equivalent:

(a) x is a Pareto loser.

(b) The singleton lottery x is SD-inefficient.

(c) {x} is an SD-inefficient support.

(d) All supports that include x are SD-inefficient.

In particular, this shows that the singleton SD-inefficient supports are precisely those that consist
of a single Pareto loser. We can therefore decide the SD-efficiency of singleton supports particularly
easily by checking whether the alternative is a Pareto loser.

Proof. To show (a)⇒ (b), suppose x is a Pareto loser. Then there exists some y such that
y �Pareto(R) x and therefore, using Corollary 5, also y �Pareto(SD◦R) x. Therefore, the singleton
lottery x is SD-inefficient.
Conversely, to show (b)⇒ (a), suppose x is SD-inefficient. Then there exists a lottery

q∈∆(A) such that q �Pareto(SD◦R) x. Using Corollary 5, this implies that y �Pareto(R) x holds
for all y ∈ supp(q). Since the support of a lottery must be non-empty, there is at least one
such y and therefore y strictly Pareto-dominates x.
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We have thus shown the equivalence of (a) and (b). The equivalence of (b), (c), and (d)
is an instance of Theorem 7 and Corollary 8.

This directly implies that SD-Efficiency is a stronger notion than ex-post-Efficiency:

Corollary 10. Any SD-efficient SDS f is also ex-post-efficient.

Proof. This follows directly from the previous corollary: if x is a Pareto loser and x were in
the support of f(R), then f(R) would be SD-inefficient.

The essence of SD-efficiency. To summarise: Given a preference profileR, we can break
down the consequences of SD-efficiency for an SDS f to requiring that the support of f(R)

is not one of the (finitely many) inefficient supports. This can be simplified even more, since
any superset of an inefficient support is also inefficient: We must require that f(R) not be a
superset of any inclusion-minimal inefficient support, i. e. that for each inefficient support
X , there exists an x ∈ X such that f(R)(x) = 0.
For any given preference profile R, SD-efficiency of f therefore boils down to a finite

number of conditions, each of which is of the form f(R)(x1) = 0 ∨ . . . ∨ f(R)(xn) = 0.
However, what is still missing is a way to actually compute these inclusion-minimal inefficient
supports. To do this, we can use the following observation:

Observation 1. The SD-Inefficiency of a support B is equivalent to the SD-Inefficiency of the
uniform distribution U(B). Moreover, U(B) is inefficient iff there exists some q ∈ ∆(A) such that,
for each agent i ∈ N and each alternative x ∈ A, the inequality

Pq{y ∈ A | y �R(i) x} ≥ PU(B){y ∈ A | y �R(i) x}

holds, and at least one of those inequalities needs to be strict. This can be expressed by introducing a
slack variable ri,x for each inequality and requiring that all slack variables be non-negative and their
sum be positive.

Whether or not this is possible can be decided by solving the following linear program and checking
whether the optimal solution is non-zero:

maximise
∑
i∈N

∑
x∈A

ri,x over qx for x∈A and ri,x for i∈N, x∈A

such that ∀x∈A. qx ≥ 0 and
∑
x∈A

qx = 1

and ∀i∈N. ∀x∈A. ri,x ≥ 0

and ∀i∈N. ∀x∈A.
∑

y�R(i) x

qy = ri,x +
|{y ∈ B | y �R(i) x}|

|B|
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In fact, any such (not necessarily optimal) solution of this linear program is an easy-to-check cer-
tificate for the SD-Inefficiency of B if its value is non-zero; conversely, any optimal solution with a
value of 0 is a certificate for the SD-Efficiency of B (combined with a solution to the dual program).

We can actually reduce this a little more: instead of considering every alternative x∈A for every
agent i∈N , it suffices to consider one alternative from each indifference class for every agent i∈N ,
and we can ignore the least-preferred indifference class for each agent, since the inequalities simplify
to 1 ≤ 1 for least-preferred elements. We therefore have k − 1 equations for every agent, where k is
the number of indifference classes of that agent.

This effectively reduces deciding the SD-Efficiency of a support to a linear program,which
can be solved easily using a Linear Programming solver. One can then find all inclusion-
minimal SD-inefficient supports by starting with a single alternative and adding alternatives
until the support thus obtained becomes inefficient.

Example 2. Consider the following preference profile:

R : {b, d}, {a, c} {c, d}, {a, b} a, b, {c, d} a, c, {b, d}

By solving the corresponding linear programs, we find that the only inclusion-minimalSD-inefficient
support is {b, c}. For illustration, the linear program2 corresponding to the support {b, c} is:

maximise r1,1 + r2,1 + r3,1 + r3,2 + r4,1 + r4,2

such that qa + qb + qc + qd = 1

and qb + qd = r1,1 + 1/2

and qc + qd = r2,1 + 1/2

and qa = r3,1

and qa + qb = r3,2 + 1/2

and qa = r4,1

and qa + qc = r4,2 + 1/2

Note the correspondence of each of the equations (except for the first) to an indifference class of an
agent.

2Note that, by convention, all variables in a Linear Programming problem are implicitly assumed to be non-
negative unless other bounds are specified explicitly.
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The same problem written in the LP format is:

MAXIMIZE

r1_1 + r2_1 + r3_1 + r3_2 + r4_1 + r4_2

SUBJECT TO

qa + qb + qc + qd = 1

- r1_1 + 2 qb + 2 qd = 1

- r2_1 + 2 qc + 2 qd = 1

- r3_1 + 2 qa = 0

- r3_2 + 2 qa + 2 qb = 1

- r4_1 + 2 qa = 0

- r4_2 + 2 qa + 2 qc = 1

END

The (abridged) solution that QSOpt_ex outputs is:

status = OPTIMAL

status OPTIMAL

Value = 2

VARS:

r4_1 = 1

r3_1 = 1

qd = 1/2

qa = 1/2

Note that all variables not present in the solution have value 0 by convention. The witness lottery is
therefore 1/2a+ 1/2d. We can conclude that {b, c} is inefficient and f(R)(b) = 0 ∨ f(R)(c) = 0.

3.5 Strategy-Proofness

Strategy-Proofness is again motivated by a very simple intuitive demand: No agent should
be able to obtain a better result for herself by misrepresenting her preferences. There are
two ways to capture this intuition formally:

• The outcome that an agent obtains when she submits her true preferences is always at
least as good as the outcome that she gets with the manipulated preferences.

• The outcome that an agent obtains when she submits manipulated preferences is never
strictly better than the outcome that she gets if she submits her true preferences.

While these two formulations sound equivalent, there is a subtle difference: Recall that
lottery extensions are typically not total. In particular, Stochastic Dominance, which we will
use, is not total and therefore ‘at least as good as’ is a much stronger statement than ‘not
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worse’. In fact, recall Theorems 1 and 3:

p �SD q ←→ ∀u∈vNM(�). Ep[u] ≥ Eq[u]

p ⊀SD q ←→ ∃u∈vNM(�). Ep[u] ≥ Eq[u]

In other words: p is at least as good as q (w. r. t. SD) iff p yields at least as much expected
utility than q no matter what the agents utility function is. On the other hand, p is already
considered no worse than q (w. r. t. SD) iff p yields at least as much expected utility than q
for at least one utility function. The first formulation is therefore considerably stronger than
the second one.

This leads to the following two notions of Strategy-Proofness:

Definition 10. For a preference profile R, we write R[i := �′] for the profile obtained from R by
replacing the preferences of agent i with the alternative preference relation �′.

Then, we say that an SDS f is strongly strategy-proof if for all preference profiles R, all agents i,
and any total preorder �′:

f(R) �SD(R(i)) f(R[i := �′])

We say that f is weakly strategy-proof (or just strategy-proof) if for all preference profiles R, all
agents i, and any total preorder �′:

f(R) ⊀SD(R(i)) f(R[i := �′])

As explained before, these notions can be stated more intuitively as:

‘No agent can obtainmore expected utility bymisrepresenting her preferences . . .

. . . no matter what her utility function is (in case of strong Strategy-Proofness).

. . . for at least one particularutility function (in case ofweakStrategy-Proofness).’

3.6 Lifting

We will now explore how an SDS for a given set of agents and alternatives can be lowered
to an SDS for a smaller set of agents and alternatives – and consequently, how impossibility
results for SDSs for a certain number of agents and alternatives can be lifted to more agents
and alternatives.

Supposewe have an electorateN2 and an agendaA2. Nowfix some arbitrary sub-electorate
N1 of N2 and some sub-agenda A1 of A2. All of these must, of course, be non-empty.
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Definition 11 (Lifting Preference Profiles). Let R be a preference profile of N1 and A1. We now
define the lifted preference profile R̄ such that

• all agents in N1 have the same preferences w. r. t. A1 as they do in R.

• all agents in N1 strictly prefer every alternative in A1 to every alternative in A2 \A1.

• all agents in N1 are indifferent between all alternatives in A2 \A1.

• all agents in N2 \N1 are indifferent between all alternatives.

This lifting mechanism has the following convenient properties:

Lemma 11.

(a) For any permutation π of N1, we have R ◦ π = R̄ ◦ π.

(b) For any permutation σ of A1, we have Rσ = R̄σ.

(c) The Pareto losers of R̄ are the Pareto losers of R plus all alternatives in A2 \A1.

(d) For every agent i in N1 and any p, q∈∆(A1), we have p �SD(R̄(i)) q ←→ p �SD(R(i) q.

(e) For every agent i in N2 \N1 and any p, q∈∆(A2), we have p ∼SD(R̄(i) q.

(f) Therefore, if a lottery p∈∆(A1) is SD-efficient w. r. t. R̄, it is also in ∆(A2) and SD-efficient
w. r. t. R.3

Proof. All of these facts follow rather directly from the definitions, so the exact proofs will
not be printed here.

We can now use lifting of profiles to lower an SDS for N2 and A2 to one for N1 and A1:

Lemma 12 (Lowering SDSs). Let f be an ex-post-efficient SDS forN2 andA2. We define f̄(R) :=

f(R̄).
To show that this is well-defined, we must show that f̄(R) ∈ ∆(A1), i. e. for any preference profile

R on N1 and A1, no alternative from A2 \ A1 is in the support of f̄(R) = f(R̄). This is obviously
the case, since the alternatives in A2 \A1 are Pareto losers w. r. t. R̄ and f is ex-post-efficient.

We still need to justify that Anonymity/Neutrality/ex-post-Efficiency/SD-Efficiency/SD-Strategy-
Proofness carry over. This follows easily from Lemma 11, so the exact proofs will be omitted here.

Corollary 13 (Lifting Impossibility Results). Consider an impossibility result form agents and
n alternatives involving ex-post-Efficiency or SD-Efficiency and possibly involving Anonymity/
Neutrality/SD-Strategy-Proofness, i. e. ‘There exists no ex-post-/SD-efficient SDS on m agents
and n alternatives that fulfils a given subset of the previously named properties.’

Then there exists no such SDS form′ agents and n′ alternatives for anym′ ≥ m, n′ ≥ n.
3This ‘if’ is actually an ‘iff’, but the other direction is not as obvious. However, a formal Isabelle/HOL proof of
both directions exists.
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4 Main Impossibility Result

4.1 Background Theory

I will now describe how the concepts defined in Section 3 were formalised in Isabelle/HOL.
All of these concepts and the theorems about them are available in the Archive of Formal
Proofs [Ebe16a] and can be used for similar projects in the future. The current formalisation
focuses on weak preferences and Stochastic Dominance, but it is flexible enough to be
extended to other preference domains and lottery extensions.
The flexibility is due to the heavy use of the Isabelle feature of locales [Bal14]. These

are named contexts with certain fixed variables and assumptions. The user can then make
definitions and prove theorems containing these variables and using these assumptions. A
locale can be instantiated by giving concrete values for its fixed variables and proving that
the locale assumptions hold on these values. Upon doing this, the user gains access to all
the locale theorems, instantiated with the concrete values of the interpretation.
The standard example for locales are algebraic structures such as monoids: a monoid

locale would fix a function f of type α→ α→ α (a curried function taking two arguments
of type α and returning a value of type α) and a neutral element e of type α and assume
that f is associative and f(x, e) = f(e, x) = x.
Typically, it is convenient to also fix an explicit carrier set of type α set, since one would

otherwise be restricted to viewing the entire universe of the type α as the carrier set, which
means that something like ‘The monoid of non-negative real numbers with addition’ is not
possible without introducing a new type for non-negative real numbers. It also makes it all
but impossible to consider something like a sub-monoid.

This will be a common occurrence in this formalisation as well: We have a type of agents
and a type of alternatives, but we do not consider all of these values to be ‘an agent’ or ‘an
alternative’. We therefore have an explicit set of type agent set and of type alt set and ignore
all values of the type that are not in this carrier set.

Examples for locales in the formalisation are:

• Preorders: Fix a carrier set and a binary function le :: α → α → bool with the as-
sumptions that le is reflexive and transitive and returns false for all values not in the
carrier

• Total preorders: Defined as a preorder with the additional assumption that le is total.

• Finite total preorders: Defined as a total preorder with a finite carrier set

• Preference profiles: Defined as a family of finite total preorders over the set of alternat-
ives, indexed by the set of agents, i. e. a function that sends a value of type agent to a
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relation on the type alt such that each agent is mapped to a finite complete preorder
on the set of alternatives and every ‘non-agent’ is mapped to the empty relation.4

• Elections: Fixes a finite non-empty set of agents and a finite non-empty set of alternat-
ives

• Social Decision Schemes: Defined as an election plus a function sds that sends pref-
erence profiles to discrete probability distributions on the type of alternatives (i. e.
lotteries). Additionally, we require that any valid preference profile gets mapped to a
lottery whose support is a subset of the set of alternatives. (i. e. every non-alternative
has probability 0)

In a similar vein, I then define locales for Anonymity, Neutrality, SD-Strategy-Proofness, etc.
As a test of the practicality of the formalisation and to increase the confidence in the defin-

itions of Strategy-Proofness and the other properties, I also defined Random Dictatorship
and Random Serial Dictatorship and proved their properties.

The impossibility of an anonymous and neutral SDS that satisfies SD-Efficiency and SD-
Strategy-Proofness is then stated by defining a locale that is a combination of the locales
for anonymity, neutrality, SD-Efficiency, and SD-Strategy-Proofness and then proving False
within that locale.

4.2 Gathering Facts

As a preparation to the Isabelle proof and the human-readable proof, let us first explore how
the SMT proof by Brandl et al. works. All of this is also described in their paper [BBG16].
The four properties (Anonymity, Neutrality, SD-Strategy-Proofness, and SD-Efficiency)

impose restrictions on the results that an SDS may produce for any given preference profile.
If there is no SDS that fulfils all four properties, then the restrictions that arise from the four
properties for all valid preference profiles are inconsistent.

Another insight is that, due to the symmetry conditions imposed by Anonymity and
Neutrality, all preference profiles that are equivalent modulo permutation of the agents
and / or the alternatives can be identified (e. g. by choosing a canonical representative). This
reduces the number of preference profile that need to be considered from 31,640,625 to
471,956.
However, these are still to many profiles for an SMT proof, and certainly too many for

a human-readable proof. The key insight is therefore that we may not have to consider all
profiles to arrive at inconsistent conditions; a subset of them – ideally a small one – may
already suffice.

4Note that the assumption that non-agents are mapped to the empty relation is important: otherwise, two
preference profiles could differ only in what relations they assign to a non-agent, and a voting rule could
examine this and return different results for the two profiles. With our additional assumption, we prevent
this, since it implies that two preference profiles that have the same relations for all agents are logically equal.
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This is, in fact, the case. Brandl et al. [BBG16] have found a set of 47 preference profiles (or
rather anonymity–neutrality equivalence classes of profiles) for which the arising conditions
are inconsistent. This set was found by starting from an initial profile and systematically
introducing certain manipulations to obtain new profiles. Once a sizeable number of profiles
has been gathered this way, one derives all conditions that arise from them and gives these
conditions to an SMT solver. If the solver finds the conditions to be unsatisfiable, this proves
the impossibility result.
The conditions that are given to the SMT solver are of the following form (where pi,x is

the probability f(Ri)(x)):

Lottery conditions. pi,x ≥ 0 for any i, x and
∑

x∈A pi,x = 1 for any i.

Orbit conditions. IfRσ◦π = R, then f(R)(σ(x)) = f(R)(x) for any x ∈ A. This essentially
says that if there is a permutation σ of the alternatives such that renaming the alternatives
in Rwith σ leads to a profile that is equivalent (w. r. t. anonymity) to R, then all alternatives
on an orbit of σ must receive the same winning probability.

Example 3. Consider the following profile:

R : {b, d}, {a, c} {c, d}, {a, b} a, b, {c, d} a, c, {b, d}

Renaming b to c and c to b, i. e. applying the permutation σ = (a)(b c)(d), yields the following
profile:

Rσ : {c, d}, {a, b} {b, d}, {a, c} a, c, {b, d} a, b, {c, d}

This profile is obviously anonymity-equivalent to the original profile, and therefore, every anonymous
and neutral SDS must assign the same probabilities to all elements of an orbit of σ. Since the only
non-trivial orbit is (b c), this means that the only orbit condition here is f(R)(b) = f(R)(c).

Efficiency conditions. As we have seen in Observation 1, for a profile Ri, SD-Efficiency
boils down to ∃x∈A. pi,x for each inclusion-minimal inefficient support A of Ri, and these
inclusion-minimal inefficient supports can be found by solving linear programs. (see Ex-
ample 2)

Strategy-Proofness conditions. IfRj , Rk are two profiles and σ : A→ A,π : N → N are
permutations such thatRj andRσk ◦π agree except for voter i, then f(Rk) ◦ σ �SD(Rj(i)) f(Rj).
This is equivalent to:

∃x∈A.
∑

y�Rj(i)
x

pk,σ(y) <
∑

y�Rj(i)
x

pj,y ∨ ∀x∈A.
∑

y�Rj(i)
x

pk,σ(y) =
∑

y�Rj(i)
x

pj,y
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Example 4. Consider the following two preference profiles:

R : {b, d}, {a, c} {c, d}, {a, b} a, b, {c, d} a, c, {b, d}

R′ : {a, b}, {c, d} {a, c}, {b, d} d, {a, b}, c d, c, {a, b}

If Agent 4 in R replaces her preferences with a, {c, d}, b, we obtain the following profile:

{b, d}, {a, c} {c, d}, {a, b} a, b, {c, d} a, {c, d}, b

On the other hand, renaming the alternatives in R′ with σ = (a d)(b c) yields the following profile:

R′σ : {d, c}, {b, a} {d, b}, {c, a} a, {d, c}, b a, b, {d, c}

It is now easy to see that these last two profiles are equivalent modulo anonymity. Strategy-Proofness
therefore implies f(R′σ) = f(R′) ◦ σ �SD(R(4)) f(R), or, equivalently:

f(R′)(d) < f(R)(a) ∨ f(R′)(d) + f(R′)(b) < f(R)(a) + f(R)(c) ∨

(f(R′)(d) = f(R)(a) ∧ f(R′)(d) + f(R′)(b) = f(R)(a) + f(R)(c))

Since all quantification in these conditions is over finite sets, these conditions all fall into
the realm of quantifier-free linear real arithmetic, which is a decidable theory, and virtually
all SMT solvers have very efficient complete decision procedures for it.

4.3 Automation in Isabelle/HOL

Isabelle itself is written in Standard ML and contains a sophisticated ML system that allows
compiling and adding new code at run-time. Users can add custom proof methods written
in ML to automate proof steps and commands to automatically define constants, derive
facts, etc. I developed a number of such Isabelle commands to automate the fact gathering
described in the previous section:

preference_profiles defines one or more preference profiles from the corresponding weak
rankings and automatically proves their well-definedness.

derive_orbit_equations computes the orbit conditions of preference profiles thus defined
and proves them automatically. For each orbit, a canonical representative x is chosen
and the orbit conditions have the form f(R)(y) = f(R)(x), where y 6= x is some other
element on the orbit. This makes it possible to use the orbit conditions directly as
rewrite rules for Isabelle’s simplifier, since the equations are normalising.

find_inefficient_supports computes Pareto losers and SD-inefficient supports and auto-
matically proves the corresponding conditions for ex-post- and SD-efficient SDSs. In
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order to find SD-inefficient supports and prove their inefficiency, the ML code invokes
the external Linear Programming solver QSOpt_ex in the way described in Observa-
tion 1. Note again that QSOpt_ex uses exact arbitrary-precision rational arithmetic,
which is important, because we need to import the solutions back into Isabelle and
any rounding might lead Isabelle to reject the witnesses (e. g. if the probabilities do
not sum to exactly 1 anymore).

prove_inefficient_supports takes a list of ex-post- and SD-inefficient supports where each
SD-inefficient support is annotated with a witness lottery (i. e. a lottery that is strictly
SD-preferred to the uniform distribution on the inefficient support). As explained
in Observation 1, this witness lottery can be read directly from the solution of the
corresponding linear program.

I introduced this command to make the final proof independent of the external linear
programming solver: The witness lotteries can be computed once with find_inefficient_
supports using the external solver; then, we can replace this invocation with a cor-
responding invocation of prove_inefficient_supports, annotated with the witnesses that
were just computed. In fact, the find_inefficient_supports command outputs a hyperlink
that allows the user to automatically replace it with a corresponding invocation of
prove_inefficient_supportswith all the witnesses filled in as needed.

derive_strategyproofness_conditions takes a list of preference profiles and computes
all possible manipulations of all profiles in this list that yield another profile in the list
and derives and proves all the conditions that arise from these manipulations for a
(weakly) strategy-proof SDS. The user can specify an optional distance threshold to
restrict the search to small manipulations.

Note that this ML code is untrusted: We did not verify it and there is, in fact, no need to
verify it. Since all proofs go through the Isabelle kernel, a bug in our code would simply
lead to one of our commands producing unprovable goals or failing to derive a fact that it
should have derived – but it will never lead to an inconsistency unless Isabelle’s kernel itself
contains a bug.

All of this automation is also available in theArchive of Formal Proofs entry on Randomised
Social Choice. [Ebe16a]
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4.4 Proof

We are now ready to formulate the proof of our main theorem. The formal proof in Isabelle/
HOL is available in its own entry in the Archive of Formal Proofs [Ebe16b]. The relevant
parts should be fairly readable even for readers who are not too familiar with Isabelle. The
following proof is a paraphrased version of this Isabelle proof.
Generally, we will attempt to ‘solve’ preference profiles, i. e. determine the exact value

of f(Ri)(x) (which we write as pi,x) for a profile Ri and an alternative x. Where this is not
possible, we try to express pi,x in terms of other pj,y or at least find simple inequalities that
the pi,x satisfy. We do this until we have gained enough knowledge about the SDS to derive
a contradiction.

A typical step in the proofs will be to pick a Strategy-Proofness condition (which usually
consist of several disjunctions) and simplify it with all the knowledge that we have – substi-
tuting the pi,x whose values we already know, substituting pi,d = 1− pi,a if we know that
pi,b = pi,c = 0 etc. We will use the fact that all pi,x are non-negative and that

∑
x∈A pi,x = 1

without mentioning it explicitly.
Every step of the proof (i. e. ‘Condition X simplifies to . . . ’ or ‘Condition X implies . . . ’)

is elementary in the sense that it can by solved automatically by Isabelle’s automation – in
fact, the proof printed here is often considerably more verbose and with more intermediate
steps than would be necessary in Isabelle. Still, for a human, most of these steps will require
a few steps of reasoning on paper. I chose not to go into more detail on the individual steps,
since it would only have made the proof even longer and less readable.
The proof will reference orbit equations, support conditions, and Strategy-Proofness

conditions on the set of 47 preference profiles mentioned before. These preference profiles
and a list of the conditions with a justification for each of them can be found in the appendix.
Furthermore, recall that the entire proof as printed here and all the conditions from the
appendix have been machine-checked using Isabelle/HOL to minimise the chance of errors.

As an aid to the reader, the proof contains tables listing all the knowledge that we currently
have about the probabilities of the lottery returned by the hypothetical SDS after every few
steps.

Now, to beginwith the proof,we shall first focus on those profiles that have rich symmetries
(i. e. orbit conditions) and restrictive support conditions (e. g. that contain Pareto losers).
We will start with the most obvious ones:

• The orbit conditions of R45 obviously imply p45,a = p45,b = p45,c = p45,d = 1/4.

• The support conditions for R10 state that at least one of p10,b and p10,c is 0, and since
the orbit conditions state that p10,b = p10,c, we have p10,b = p10,c = 0.

• In the same fashion, we can show that pi,x = 0 for i ∈ {26, 27, 28, 29} and x ∈ {b, c}.
For R29, the orbit condition then additionally implies p29,a = p29,d = 1/2.
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• The support conditions for R43 state p43,b = p43,c = 0, and with the orbit condition
p43,a = p43,d we have p43,a = p43,d = 1/2.

In summary, we have now derived the following information about the profiles:

R10 R26 R27 R28 R29 R43 R45

a 1/2 ? ? ? 1/2 1/2 1/4

b 0 0 0 0 0 0 1/4

c 0 0 0 0 0 0 1/4

d 1/2 ? ? ? 1/2 1/2 1/4

• Suppose p39,c = 0. Then (S29,39) implies p39,d ≤ 1/2 and (S39,29) then implies p39,b = 0.
Since the support condition for R39 states that p39,b = 0 ∨ p39,c = 0, we can conclude
that, in any case, p39,b = 0.

• Using this, (S39,29) now simplifies to p39,a ≤ 1/2.

• (S10,36) simplifies to p36,a + p36,b ≤ 1/2. Using this, (S36,10) simplifies to p36,a = 1/2 ∧
p36,b = 0.

• (S36,39) simplifies to p39,a ≥ 1/2. Using this, (S39,36) simplifies to p39,a = 1/2.

• (S12,10) simplifies to p12,a + p12,d ≥ 1, which implies p12,c = 0.

• (S10,12) then simplifies to p12,a ≥ 1/2.

• (S12,44) simplifies to p44,a ≤ p12,a. Using this, (S44,12) simplifies to p44,a = p12,a∧p44,c =

0.

• (S9,35) simplifies to p35,a ≤ p9,a, and then (S35,9) simplifies to p9,a = p35,a.

• (S9,18) states that p9,a + p9,d ≤ p18,a + p18,d, and then (S9,18) simplifies to p18,c = p9,c.

To summarise:

R9 R10 R12 R18 R26 R27 R28 R29 R36 R39 R43 R44 R45

a p35,a 1/2 ≥ 1/2 ? ? ? ? 1/2 1/2 1/2 1/2 p12,a 1/4

b 0 0 0 0 0 0 0 0 0 0 0 0 1/4

c ? 0 0 p9,c 0 0 0 0 ? ? 0 0 1/4

d ? 1/2 ≤ 1/2 ? ? ? ? ? 1/2 ? 1/2 1− p12,a 1/4

• (S5,10) implies p5,d ≥ 1/2.

• (S5,17) implies p5,d ≤ p17,d, and (S17,7) simplifies to p17,d ≤ p7,d. Combined with
p5,d ≥ 1/2 from above, we have p7,d ≥ 1/2. Using this, (S7,43) implies p7,a = 1/2 and
p7,c = 0, and therefore p7,d = 1/2.
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• (S5,7) now simplifies to p5,d ≤ 1/2, and p5,d ≥ 1/2 was already shown, so we have
p5,d = 1/2.

• (S5,10) now simplifies to p5,c = 0, and it is then clear that p5,a = 1/2.

• Suppose p15,b = 0. Then (S10,15) simplifies to p15,a+p15,c ≤ 1/2 and, using that, (S15,10)
implies p15,c = 0. Since the support conditions for R15 tell us that p15,b = 0 ∨ p15,c = 0,
we can conclude p15,c = 0.

• (S15,5) then implies p15,a ≥ 1/2 and (S15,7) implies p15,a ≤ 1/2. We can conclude that
p15,a = 1/2.

• (S15,5) now simplifies to p15,d = 1/2 ∧ p15,b = 0.

• (S27,13) simplifies to p13,a + p13,b ≤ p27,a. Using that, (S13,27) simplifies to p13,b =

p13,c = 0 and p27,a = p13,a.

• (S15,13) now implies p13,a ≥ 1/2 and (S13,15) simplifies to p13,a ≤ 1/2, so that we can
conclude p13,a = p13,d = p27,a = p27,d = 1/2.

We summarise what we have learned so far:

R5 R7 R9 R10 R12 R13 R15 R18 R26 R27 R28 R29

a 1/2 1/2 p35,a 1/2 ≥ 1/2 1/2 1/2 ? ? 1/2 ? 1/2

b 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 ? 0 0 0 0 p9,c 0 0 0 0

d 1/2 1/2 ? 1/2 ≤ 1/2 1/2 1/2 ? ? 1/2 ? 1/2

R36 R39 R43 R44 R45

a 1/2 1/2 1/2 p12,a 1/4

b 0 0 0 0 1/4

c ? ? 0 0 1/4

d ? ? 1/2 1− p12,a 1/4

• We will now determine the probabilities for R19. The support condition tells us that
p19,b = 0 ∨ p19,c = 0.

– Suppose p19,b = 0. Then (S10,19) simplifies to p19,a + p19,c ≤ 1/2 and (S19,10)
simplifies to p19,a + p19,c = 1/2. We can therefore conclude that p19,d = 1/2. Using
this, (S27,19) then simplifies to p19,a = 1/2 ∧ p19,c = 0 and therefore p19,d = 1/2.

– Suppose p19,c = 0. Then (S19,10) simplifies to p19,a ≥ 1/2 and (S19,27) simplifies
to p19,d ≥ 1/2. This clearly implies p19,a = p19,d = 1/2 and p19,b = 0.

• Using this, (S19,1) simplifies to p1,a + p1,b ≤ 1/2, and with that, (S1,19) simplifies to
p1,a = 1/2 ∧ p1,b = 0.
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• (S33,5) simplifies to p33,a ≥ 1/2. Moreover, (S33,22) simplifies to p22,c + p22,d ≤ p33,c +

p33,d, i. e. p33,a ≤ p22,a. We therefore have p22,a ≥ 1/2. Using this, (S22,29) simplifies to
p22,a = p22,d = 1/2 and therefore also p22,c = 0.

• (S32,28) implies p28,a ≤ p32,d. Then (S28,32) implies p32,d = p28,a. Moreover, (S22,32)
simplifies to p32,a ≤ 1. Using these two facts, (S32,22) implies p32,d = 1/2 and therefore
also p28,a = p28,d = 1/2.

• (S28,39) now simplifies to p39,c = 0, and since we have already determined p39,a = 1/2

and p39,b = 0, we can conclude p39,d = 1/2.

• (S1,2) states that p2,c + p2,d ≤ p1,c + p2,d. Using this, (S2,1) simplifies to p2,a = p2,c +

p2,d = 1/2 and therefore also p2,b = 0. Using this, (S39,2) simplifies to p2,c = 0 ∧ p2,d =

1/2.

• We will now determine R42:

– (S17,5) simplifies to p17,a + p17,c ≥ 1/2 and (S5,17) simplifies to p17,a + p17,c ≤ 1/2,
so we can conclude p17,d = 1/2.

– (S6,42) states that p42,a + p42,c ≤ p6,a + p6,c and (S6,19) implies p6,a + p6,c ≤ 1/2.
We can therefore conclude that p42,a + p42,c ≤ 1/2.

– (S17,11) states that p11,a + p11,c ≤ p17,a + p17,c. Since p11,b = p17,b = 0, this is
equivalent to p11,d ≥ p17,d = 1/2 ≥ p42,a + p42,c. With this, (S42,11) implies p42,c ≥
p11,d ≥ 1/2.

– (S17,3) simplifies to p3,a + p3,c ≤ p17,a + p17,c; i. e. p3,d ≥ p17,d = 1/2.

– Finally, using p42,c ≥ 1/2 and p3,d ≥ 1/2, (S42,3) simplifies to p42,c ≥ 1/2∧p42,d ≥ 1/2

and therefore p42,a = p42,b = 0 and p42,c = p42,d = 1/2.

• Using these values forR42, the two conditions (S37,42 (1)) and (S37,42 (2)) now simplify
to p37,a = 1/2 ∨ p37,a + p37,b > 1/2 and p37,c = 1/2 ∨ p37,c + p37,d > 1/2. Together, these
obviously imply p37,a = p37,c = 1/2 and p37,b = p37,d = 0.

• Similarly, R24 simplifies to p24,a + p24,b ≤ 0 and therefore p24,a = p24,b = 0.

R1 R2 R5 R7 R9 R10 R12 R13 R15 R18 R19 R22 R24

a 1/2 1/2 1/2 1/2 p35,a 1/2 ≥ 1/2 1/2 1/2 ? 1/2 1/2 0

b 0 0 0 0 0 0 0 0 0 0 0 0 0

c ? 0 0 0 ? 0 0 0 0 p9,c 0 0 ?
d ? 1/2 1/2 1/2 ? 1/2 ≤ 1/2 1/2 1/2 ? 1/2 1/2 ?

30



Main Impossibility Result

R26 R27 R28 R29 R36 R37 R39 R42 R43 R44 R45

a ? 1/2 1/2 1/2 1/2 1/2 1/2 0 1/2 p12,a 1/4

b 0 0 0 0 0 0 0 0 0 0 1/4

c 0 0 0 0 ? 1/2 0 1/2 0 0 1/4

d ? 1/2 1/2 1/2 ? 0 1/2 1/2 1/2 1− p12,a 1/4

• (S24,34) implies p34,b ≤ p24,c and (S34,24) implies p24,c ≤ p34,b; we therefore have
p34,b = p24,c. Using this, (S34,24) simplifies to p34,c = 0 and (S24,34) simplifies to
p34,d = 0.

• (S14,34) now simplifies to p14,a + p14,c ≥ 1, so we have p14,b = p14,d = 0.

• (S46,37) simplifies to p46,a = p46,c = 0.

• (S46,20) now simplifies to p20,a + p20,c ≤ 0, so we have p20,a = p20,c = 0.

• (S20,21) now simplifies to p21,b = p21,c = 0.

• (S12,16) simplifies to p16,a + p16,c ≤ p12,a.

• We now determine the probabilities for p16,c:

– (S44,40) simplifies to p12,a ≤ p40,a. Moreover, (S9,40) simplifies to p40,a ≤ p9,a.
Combined with p16,a + p16,c ≤ p12,a, this implies p16,a + p16,c ≤ p9,a.

– (S14,16) implies p16,a ≥ p14,a.

– Combining the last two facts, we obtain p16,c ≤ p9,a − p14,a. Moreover, (S14,9)
implies p9,a − p14,a ≤ 0. Combining this, we have p16,c = 0.

• Therefore, the fact p16,a + p16,c ≤ p12,a, which we have shown before, now simplifies
to p16,a ≤ p12,a.

• Since (S14,16) simplifies to p14,a ≤ p16,a, we then have p14,a ≤ p12,a.

R1 R2 R5 R7 R9 R10 R12 R13 R14 R15 R16 R18 R19

a 1/2 1/2 1/2 1/2 p35,a 1/2 ≥ 1/2 1/2 ≤ p12,a 1/2 ? ? 1/2

b 0 0 0 0 0 0 0 0 0 0 0 0 0

c ? 0 0 0 ? 0 0 0 ? 0 0 p9,c 0

d ? 1/2 1/2 1/2 ? 1/2 ≤ 1/2 1/2 0 1/2 ? ? 1/2

R20 R21 R22 R24 R26 R27 R28 R29 R34 R36 R37 R39

a 0 ? 1/2 0 ? 1/2 1/2 1/2 1− p24,c 1/2 1/2 1/2

b ? 0 0 0 0 0 0 0 p24,c 0 0 0

c 0 0 0 ? 0 0 0 0 0 ? 1/2 0

d ? ? 1/2 ? ? 1/2 1/2 1/2 0 ? 0 1/2
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R42 R43 R44 R45 R46

a 0 1/2 p12,a 1/4 0

b 0 0 0 1/4 ?
c 1/2 0 0 1/4 0

d 1/2 1/2 1− p12,a 1/4 ?

• We now show that p12,a = p9,a = p35,a:

– (S14,9) implies p9,a ≤ p14,a. Since p14,a ≤ p12,a, we have p9,a ≤ p12,a.

– (S44,40) simplifies to p12,a ≤ p40,a. Moreover, (S9,40) simplifies to p40,a ≤ p9,a;
therefore, we have p12,a ≤ p9,a.

– Combining these two inequalities yields p12,a = p9,a.

• Recall that p14,a ≤ p12,a = p9,a. Then (S14,9) simplifies to p9,a = p14,a ∧ p9,d = 0.

• (S23,19) simplifies to p23,a + p23,d ≥ 1 and therefore p23,b = p23,c = 0.

• (S35,21) simplifies to p21,a ≤ p35,a + p35,c. Then (S21,35) simplifies to p35,c = 0∧ p35,a =

p21,a.

• Next, we derive the probabilities for R18:

– (S23,12) simplifies to p21,a ≤ p23,a.

– (S23,18) simplifies to p18,c + p18,d ≤ 1− p23,a. Since p18,c = p9,c = 1− p9,a = 1−
p35,a = 1−p21,a, this is equivalent to p18,d ≤ p21,a−p23,a. Recall that p9,b = p9,c = 0,
i. e. p18,c = p9,c = 1−p9,a = 1−p35,a = 1−p21,a. Substituting this in the inequality
we have just derived and rearranging yields p18,d ≤ p21,a − p23,a.

– Since p21,a ≤ p23,a, the right-hand side of the above inequality is 0 and therefore
p18,d = 0.

Now we can derive the probabilities for R4:

– (S47,30) simplifies to p30,a ≤ p47,a.

– (S4,47) simplifies to p47,a + p47,d ≤ p4,a + p4,d, i. e. p4,c ≤ p47,c.

– Adding these two inequalities, we obtain p4,c + p30,a ≤ 1− p47,d.

– (S30,21) simplifies to p21,a ≤ p30,a, and with the previous inequality, we obtain
p4,c + p21,a ≤ 1− p47,d ≤ 1. Substituting p21,a = p14,a yields p4,c + p14,a ≤ 1.

– (S4,18) now simplifies to p4,d = 0 ∧ p4,c = p21,d.

• (S8,26) implies p26,a ≤ p8,d. Using this, (S26,8) simplifies to p26,a = p8,d. Using this, we
look at (S8,26) again and find that it now simplifies to p8,a+p8,d = 1, i. e. p8,c = p8,b = 0

and p26,a = 1− p8,a.
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R1 R2 R4 R5 R7 R8 R9 R10 R12 R13 R14

a 1/2 1/2 p21,a 1/2 1/2 ? p21,a 1/2 p21,a 1/2 p21,a

b 0 0 0 0 0 0 0 0 0 0 0

c ? 0 1− p21,a 0 0 0 1− p21,a 0 0 0 1− p21,a

d ? 1/2 0 1/2 1/2 ? 0 1/2 1− p21,a 1/2 0

R15 R16 R18 R19 R20 R21 R22 R23 R24 R26 R27 R28

a 1/2 ? p21,a 1/2 0 ? 1/2 ? 0 1− p8,a 1/2 1/2

b 0 0 0 0 ? 0 0 0 0 0 0 0

c 0 0 1− p21,a 0 0 0 0 0 ? 0 0 0

d 1/2 ? 0 1/2 ? ? 1/2 ? ? p8,a 1/2 1/2

R29 R34 R35 R36 R37 R39 R42 R43 R44 R45 R46

a 1/2 1− p24,c p21,a 1/2 1/2 1/2 0 1/2 p12,a 1/4 0

b 0 p24,c 0 0 0 0 0 0 0 1/4 ?
c 0 0 0 ? 1/2 0 1/2 0 0 1/4 0

d 1/2 0 1− p21,a ? 0 1/2 1/2 1/2 1− p12,a 1/4 ?

• (S4,47) simplifies to p21,d ≤ p47,c.

• (S47,30) simplifies to p30,a ≤ p47,a. With this and the previous inequality, (S30,21)
simplifies to p30,b = p30,c = 0 and p30,a = p47,a.

• The last big and crucial step is to show that p31,c ≥ 1/2:

– The support conditions for R25 tell us that p25,b = 0 ∨ p25,c = 0. If p25,c = 0, then
(S25,36) immediately implies p25,a ≥ 1/2. If, on the other hand, p25,b = 0, then
(S36,25) implies p25,a + p25,c ≤ p36,c + 1/2, with which (S25,36) then also implies
p25,a ≥ 1/2.

– Using p25,a ≥ 1/2, the condition (S25,26) implies p26,a ≥ 1/2, and therefore also
1/2 ≤ p26,a + p47,d = 1− p8,a + p47,d.

– Now observe that (S4,8) simplifies to p21,a ≤ p8,a, which is equivalent to 1−p8,a ≤
p21,d. Combined with p21,d ≤ p47,c, which we have shown before, we now have
1/2 ≤ p47,c + p47,d.

– (S30,41) implies p41,a + p41,c ≤ p47,a, which is equivalent to p47,c + p47,d ≤ p41,d.

– (S41,31) simplifies to p31,a + p31,b + p31,d ≤ p41,a + p41,c, which is equivalent to
p41,d ≤ p31,c.

– Combining this chain of inequalities, we finally have p31,c ≥ 1/2.
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• (S2,38) simplifies to p38,a + p38,c ≤ 1/2, i. e. p38,b + p38,d ≥ 1/2. Using this and p31,c ≥
1/2, the condition (S31,38) simplifies to p38,b + p38,d = p31,b + p31,d. This means that
p31,b + p31,d ≥ 1/2, and since p31,c ≥ 1/2, we can conclude p31,b + p31,d = p31,c = 1/2 and
p31,a = 0.

It is now easy to see that each of the three cases in (S45,31) is a contradiction. We have
thus shown that the conditions are inconsistent, and therefore, there is no anonymous and
neutral SDS for four agents and alternatives that fulfils both SD-Strategy-Proofness and
SD-Efficiency.

About this proof. It may be of interest to the reader how I obtained this ‘human-readable’
proof. It was, in fact, manually extracted from the SMT proof in the following way: First
of all, I defined the preference profiles in Isabelle and derived all the required conditions
using the automation described before. Since Isabelle can invoke the SMT solver Z3 and
automatically translate Z3 proof objects to Isabelle proofs, this was already enough to prove
the impossibility result in Isabelle. However, this kind of proof has several drawbacks: while
Isabelle does not trust the external SMT solver, there is still a dependency on this third-party
software, which is heavily discouraged for Isabelle proofs. Also, this proof is somewhat
unsatisfying since it cannot be examined or checked by a human in any reasonable way.
Therefore, I then attempted to fully determine the values of as many probabilities as

possible using just one or two Strategy-Proofness conditions and then remove the corres-
ponding conditions and used Isabelle’s SMT proof method to see if the proof still worked. I
was able to make progress this way for about the first third of the proof.

I then started to conjecture facts such as p7,a = 1/2. Obviously, since the conditions are
inconsistent, these conjectures are all true andprovable,but a ‘good’ conjecture can be derived
from a small subset of the conditions. I therefore attempted bisection of the conditions using
the SMT solver to find a ‘minimal set of preconditions’, and when this set was sufficiently
small, I attempted to prove the conjecture with heavy use of Isabelle’s automation and
related facts and then remove as many of the conditions that I used, replacing them with the
facts I had just proven in the hope that I had identified the ‘important core’ of the conditions.
With this approach, I was able to remove more and more Strategy-Proofness conditions

until I was able to prove False directly. This approach led to a very linear proof without any
‘big’ case distinctions, which is remarkable considering that there are over 60 disjunctions in
the conditions altogether. I then proceeded by adding more detail to the individual proof
steps, e. g. replacing a step using several Strategy-Proofness conditions with heavy use of
automation by several steps, each using only one Strategy-Proofness condition and less
automation. After that, the Isabelle proof was in its current form, from which I then derived
the proof printed here.
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5 Conclusion

Based on work by Brandl et al. [BBS16; BBG16], I have written a fully machine-checked proof
of the incompatibility of SD-Strategy-Proofness and SD-Efficiency using the Isabelle/HOL
theorem prover and, based on this, a ‘human-readable’ proof. In the process, I have also
developed a high-level formalisation of basic concepts of Randomised Social Choice Theory
and proof automation that automatically defines and derives facts from given preference
profiles. Both of these can be used for similar future projects.

This work was also an interesting case study in how interactive theorem provers (like
Isabelle) and powerful automated theorem provers (like Z3 and other SMT solvers) can be
used not only to formally verify existing mathematical theorems, but also to find completely
new and –more or less – human-readable proofs for conjectures. For humanmathematicians,
simplifying large terms and combining large numbers of complicated linear equations and
inequalities is tedious and error-prone, but specialised computer programs (such as SMT
solvers or Isabelle’s decision procedures for linear arithmetic) excel at it. Using an interactive
proof system such as Isabelle has the great advantage that one receives immediate feedback
on everything, and it is easy to check whether an idea works out or not, and it is virtually
impossible to make a mistake.

To stress this, Iwould like tomention the priorproof of aweakerversion of the impossibility
result due to Brandl et al. [BBS16] again: As explained in Section 1.1, the attempt to prove this
result in Isabelle has brought forth a mistake in it. The proof for four voters and alternatives
works in exactly the way that Brandl et al. say, and I formalised it in Isabelle/HOL in the
initial phase of this project. However, the authors then use the lifting argument explained in
section 3.6, but the RD-extension assumption does not ‘survive’ this lifting, since the lifting
adds indifferent agents, which means that the resulting preference profile contains ties and
the RD-extension assumption is no longer applicable.

While this proof has become obsolete through their subsequentproof of the same statement
without the RD extension assumption [BBG16] and the original statement could have been
salvaged by assuming additionally that the voting rule ignores fully indifferent agents
(as the authors privately communicated to me), this shows once again that formalising
mathematical proofs often brings problems to light that have been missed otherwise, which
is particularly important in cases where the mistake cannot be repaired trivially, but requires
an entirely different proof or a modified theorem statement.
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A Appendix

A.1 Preference Profiles

Table 1 lists the 47 preference profiles used in the proof by giving the weak rankings of each
agent.

Profile Agent 1 Agent 2 Agent 3 Agent 4

R1 {c, d}, {a, b} {b, d}, a, c a, b, {c, d} {a, c}, {b, d}
R2 {a, c}, {b, d} {c, d}, a, b {b, d}, a, c a, b, {c, d}
R3 {a, b}, {c, d} {c, d}, {a, b} d, {a, b}, c c, a, {b, d}
R4 {a, b}, {c, d} {a, d}, {b, c} c, {a, b}, d d, c, {a, b}
R5 {c, d}, {a, b} {a, b}, {c, d} {a, c}, d, b d, {a, b}, c
R6 {a, b}, {c, d} {c, d}, {a, b} {a, c}, {b, d} d, b, a, c

R7 {a, b}, {c, d} {c, d}, {a, b} a, c, d, b d, {a, b}, c
R8 {a, b}, {c, d} {a, c}, {b, d} d, {a, b}, c d, c, {a, b}
R9 {a, b}, {c, d} {a, d}, c, b d, c, {a, b} {a, b, c}, d
R10 {a, b}, {c, d} {c, d}, {a, b} {a, c}, d, b {b, d}, a, c
R11 {a, b}, {c, d} {c, d}, {a, b} d, {a, b}, c c, a, b, d

R12 {c, d}, {a, b} {a, b}, {c, d} {a, c}, d, b {a, b, d}, c
R13 {a, c}, {b, d} {c, d}, a, b {b, d}, a, c a, b, d, c

R14 {a, b}, {c, d} d, c, {a, b} {a, b, c}, d a, d, c, b

R15 {a, b}, {c, d} {c, d}, {a, b} {b, d}, a, c a, c, d, b

R16 {a, b}, {c, d} {c, d}, {a, b} a, c, d, b {a, b, d}, c
R17 {a, b}, {c, d} {c, d}, {a, b} {a, c}, {b, d} d, {a, b}, c
R18 {a, b}, {c, d} {a, d}, {b, c} {a, b, c}, d d, c, {a, b}
R19 {a, b}, {c, d} {c, d}, {a, b} {b, d}, a, c {a, c}, {b, d}
R20 {b, d}, a, c b, a, {c, d} a, c, {b, d} d, c, {a, b}
R21 {a, d}, c, b d, c, {a, b} c, {a, b}, d a, b, {c, d}
R22 {a, c}, d, b d, c, {a, b} d, {a, b}, c a, b, {c, d}
R23 {a, b}, {c, d} {c, d}, {a, b} {a, c}, {b, d} {a, b, d}, c
R24 {c, d}, {a, b} d, b, a, c c, a, {b, d} b, a, {c, d}
R25 {c, d}, {a, b} {b, d}, a, c a, b, {c, d} a, c, {b, d}
R26 {b, d}, {a, c} {c, d}, {a, b} a, b, {c, d} a, c, {b, d}
R27 {a, b}, {c, d} {b, d}, a, c {a, c}, {b, d} {c, d}, a, b
R28 {c, d}, a, b {b, d}, a, c a, b, {c, d} a, c, {b, d}
R29 {a, c}, d, b {b, d}, a, c a, b, {c, d} d, c, {a, b}
R30 {a, d}, c, b d, c, {a, b} c, {a, b}, d {a, b}, d, c
R31 {b, d}, a, c {a, c}, d, b c, d, {a, b} {a, b}, c, d
R32 {a, c}, d, b d, c, {a, b} d, {a, b}, c {a, b}, d, c
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R33 {c, d}, {a, b} {a, c}, d, b a, b, {c, d} d, {a, b}, c
R34 {a, b}, {c, d} a, c, d, b b, {a, d}, c c, d, {a, b}
R35 {a, d}, c, b a, b, {c, d} {a, b, c}, d d, c, {a, b}
R36 {c, d}, {a, b} {a, c}, d, b {b, d}, a, c a, b, {c, d}
R37 {a, c}, {b, d} {b, d}, {a, c} a, b, {c, d} c, d, {a, b}
R38 {c, d}, a, b {b, d}, a, c a, b, {c, d} {a, c}, b, d
R39 {a, c}, d, b {b, d}, a, c a, b, {c, d} {c, d}, a, b
R40 {a, d}, c, b {a, b}, c, d {a, b, c}, d d, c, {a, b}
R41 {a, d}, c, b {a, b}, d, c {a, b, c}, d d, c, {a, b}
R42 {c, d}, {a, b} {a, b}, {c, d} d, b, a, c c, a, {b, d}
R43 {a, b}, {c, d} {c, d}, {a, b} d, {a, b}, c a, {c, d}, b
R44 {c, d}, {a, b} {a, c}, d, b {a, b}, d, c {a, b, d}, c
R45 {a, c}, d, b {b, d}, a, c {a, b}, c, d {c, d}, b, a
R46 {b, d}, a, c d, c, {a, b} {a, c}, {b, d} b, a, {c, d}
R47 {a, b}, {c, d} {a, d}, c, b d, c, {a, b} c, {a, b}, d

Table 1: The 47 preference profiles used in the proof.

A.2 Orbit Equations

Table 2 lists profile automorphisms, i. e. permutations of the alternatives such that applying
the permutation to the profile yields a profile that is anonymity-equivalent to the original
profile. Given such a profile, an anonymous andneutral SDSmust return the sameprobability
for each alternative on an orbit of the permutation.

To increase readability, the permutations are already written as a product of their orbits;
for instance, the first orbit condition states that p10,a = p10,d and p10,b = p10,c.

Profile Permutation

R10 (a d)(b c)

R26 (a)(b c)(d)

R27 (a)(b c)(d)

R28 (a)(b c)(d)

R29 (a d)(b c)

R43 (a d)(b c)

R45 (a b d c)

Table 2: The relevant profile automorphisms, written as a product of their orbits.
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A.3 Support Conditions

The alternative b is Pareto-dominated in the following profiles andmust therefore be assigned
probability 0 by any ex-post-efficient SDS (and thereby also by any SD-efficient SDS):

R3, R4, R5, R7, R8, R9, R11, R12, R14, R16, R17, R18, R21, R22, R23, R30, R32, R33,
R35, R40, R41, R43, R44, R47

Moreover, {b, c} is an SD-inefficient support in the following profiles (i. e. any SD-efficient
SDS must assign probability 0 to at least one of b and c):

R10, R15, R19, R25, R26, R27, R28, R29, R39

To see that this is true, note that the lottery 1/2 a + 1/2 d strictly Pareto-SD-dominates the
lottery 1/2 b+ 1/2 c for each of these profiles.

A.4 Strategy-Proofness Conditions

Table 3 lists the Strategy-Proofness conditions that were used in the impossibility proof. They
are a subset of the conditions derived by the derive_strategyproofness_conditions command
with a distance threshold of 2, i. e. the required manipulations all have a size ≤ 2.

The first number in the name of the condition indicates the original profile and the second
one is the manipulated profile (possibly with a permutation applied to the alternatives).

p2,d + p2,c ≤ p1,d + p1,c (S1,2)

p19,a < p1,a ∨ p19,a + p19,b < p1,a + p1,b ∨ (p19,a = p1,a ∧ p19,a + p19,b = p1,a + p1,b) (S1,19)
p1,d + p1,c < p2,d + p2,c ∨ p1,d + p1,c + p1,a < p2,d + p2,c + p2,a

∨ (p1,d + p1,c = p2,d + p2,c ∧ p1,d + p1,c + p1,a = p2,d + p2,c + p2,a)
(S2,1)

p38,c + p38,a ≤ p2,c + p2,a (S2,38)

p8,c < p4,d ∨ p8,c + p8,d < p4,d + p4,c ∨ (p8,c = p4,d ∧ p8,c + p8,d = p4,d + p4,c) (S4,8)
p18,c < p4,c ∨ p18,c + p18,b + p18,a < p4,c + p4,b + p4,a

∨ (p18,c = p4,c ∧ p18,c + p18,b + p18,a = p4,c + p4,b + p4,a)
(S4,18)

p47,d + p47,a ≤ p4,d + p4,a (S4,47)
p7,c + p7,a < p5,c + p5,a ∨ p7,c + p7,a + p7,d < p5,c + p5,a + p5,d

∨ (p7,c + p7,a = p5,c + p5,a ∧ p7,c + p7,a + p7,d = p5,c + p5,a + p5,d)
(S5,7)

p10,a < p5,d ∨ p10,a + p10,c + p10,d < p5,d + p5,b + p5,a

∨ (p10,a = p5,d ∧ p10,a + p10,c + p10,d = p5,d + p5,b + p5,a)
(S5,10)

p17,c + p17,a < p5,c + p5,a ∨ p17,c + p17,a + p17,d < p5,c + p5,a + p5,d

∨ (p17,c + p17,a = p5,c + p5,a ∧ p17,c + p17,a + p17,d = p5,c + p5,a + p5,d)
(S5,17)
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p19,d < p6,d ∨ p19,d + p19,b < p6,d + p6,b ∨ p19,d + p19,b + p19,a < p6,d + p6,b + p6,a

∨ (p19,d = p6,d ∧ p19,d + p19,b = p6,d + p6,b ∧ p19,d + p19,b + p19,a = p6,d + p6,b + p6,a)

(S6,19)
p42,c + p42,a ≤ p6,c + p6,a (S6,42)
p43,d < p7,a ∨ p43,d + p43,b < p7,a + p7,c ∨ p43,d + p43,b + p43,a < p7,a + p7,c + p7,d

∨ (p43,d = p7,a ∧ p43,d + p43,b = p7,a + p7,c ∧ p43,d + p43,b + p43,a = p7,a + p7,c + p7,d)

(S7,43)
p26,a < p8,d ∨ p26,a + p26,b + p26,d < p8,d + p8,b + p8,a

∨ (p26,a = p8,d ∧ p26,a + p26,b + p26,d = p8,d + p8,b + p8,a)
(S8,26)

p18,d + p18,a < p9,d + p9,a ∨ p18,d + p18,a + p18,c < p9,d + p9,a + p9,c

∨ (p18,d + p18,a = p9,d + p9,a ∧ p18,d + p18,a + p18,c = p9,d + p9,a + p9,c)
(S9,18)

p35,b + p35,a ≤ p9,b + p9,a (S9,35)

p40,b + p40,a ≤ p9,b + p9,a (S9,40)
p12,b + p12,d < p10,c + p10,a ∨ p12,b + p12,d + p12,a < p10,c + p10,a + p10,d

∨ (p12,b + p12,d = p10,c + p10,a ∧ p12,b + p12,d + p12,a = p10,c + p10,a + p10,d)
(S10,12)

p15,a + p15,c < p10,d + p10,b ∨ p15,a + p15,c + p15,d < p10,d + p10,b + p10,a

∨ (p15,a + p15,c = p10,d + p10,b ∧ p15,a + p15,c + p15,d = p10,d + p10,b + p10,a)
(S10,15)

p19,a + p19,c < p10,d + p10,b ∨ p19,a + p19,c + p19,d < p10,d + p10,b + p10,a

∨ (p19,a + p19,c = p10,d + p10,b ∧ p19,a + p19,c + p19,d = p10,d + p10,b + p10,a)
(S10,19)

p36,a + p36,b ≤ p10,d + p10,c (S10,36)

p10,a + p10,c + p10,d ≤ p12,d + p12,b + p12,a (S12,10)
p16,c + p16,a < p12,c + p12,a ∨ p16,c + p16,a + p16,d < p12,c + p12,a + p12,d

∨ (p16,c + p16,a = p12,c + p12,a ∧ p16,c + p16,a + p16,d = p12,c + p12,a + p12,d)
(S12,16)

p44,b + p44,a ≤ p12,b + p12,a (S12,44)
p15,d + p15,c < p13,d + p13,b ∨ p15,d + p15,c + p15,a < p13,d + p13,b + p13,a

∨ (p15,d + p15,c = p13,d + p13,b ∧ p15,d + p15,c + p15,a = p13,d + p13,b + p13,a)
(S13,15)

p27,a < p13,a ∨ p27,a + p27,c < p13,a + p13,b ∨ p27,a + p27,c + p27,d < p13,a + p13,b + p13,d

∨ (p27,a = p13,a ∧ p27,a + p27,c = p13,a + p13,b ∧
p27,a + p27,c + p27,d = p13,a + p13,b + p13,d) (S13,27)

p9,a < p14,a ∨ p9,a + p9,d < p14,a + p14,d ∨ p9,a + p9,d + p9,c < p14,a + p14,d + p14,c

∨ (p9,a = p14,a ∧ p9,a + p9,d = p14,a + p14,d ∧ p9,a + p9,d + p9,c = p14,a + p14,d + p14,c)

(S14,9)
p16,c < p14,d ∨ p16,c + p16,d < p14,d + p14,c ∨

(p16,c = p14,d ∧ p16,c + p16,d = p14,d + p14,c)
(S14,16)

p34,d + p34,b + p34,a ≤ p14,c + p14,b + p14,a (S14,34)
p5,d < p15,a ∨ p5,d + p5,b < p15,a + p15,c ∨ p5,d + p5,b + p5,a < p15,a + p15,c + p15,d

∨ (p5,d = p15,a ∧ p5,d + p5,b = p15,a + p15,c ∧ p5,d + p5,b + p5,a = p15,a + p15,c + p15,d)

(S15,5)
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p7,d + p7,b < p15,d + p15,b ∨ p7,d + p7,b + p7,a < p15,d + p15,b + p15,a

∨ (p7,d + p7,b = p15,d + p15,b ∧ p7,d + p7,b + p7,a = p15,d + p15,b + p15,a)
(S15,7)

p10,d < p15,a ∨ p10,d + p10,b < p15,a + p15,c ∨ p10,d + p10,b + p10,a < p15,a + p15,c + p15,d

∨ (p10,d = p15,a ∧ p10,d + p10,b = p15,a + p15,c ∧
p10,d + p10,b + p10,a = p15,a + p15,c + p15,d) (S15,10)

p13,d + p13,b ≤ p15,d + p15,c (S15,13)

p3,c + p3,a ≤ p17,c + p17,a (S17,3)

p5,c + p5,a ≤ p17,c + p17,a (S17,5)

p7,c + p7,a ≤ p17,c + p17,a (S17,7)

p11,c + p11,a ≤ p17,c + p17,a (S17,11)

p9,d + p9,a ≤ p18,d + p18,a (S18,9)

p1,b + p1,a ≤ p19,b + p19,a (S19,1)

p10,b + p10,d ≤ p19,c + p19,a (S19,10)

p27,d + p27,b ≤ p19,d + p19,c (S19,27)
p21,c < p20,a ∨ p21,c + p21,b < p20,a + p20,c

∨ (p21,c = p20,a ∧ p21,c + p21,b = p20,a + p20,c)
(S20,21)

p35,c < p21,c ∨ p35,c + p35,b + p35,a < p21,c + p21,b + p21,a

∨ (p35,c = p21,c ∧ p35,c + p35,b + p35,a = p21,c + p21,b + p21,a)
(S21,35)

p29,a < p22,d ∨ p29,a + p29,c + p29,d < p22,d + p22,b + p22,a

∨ (p29,a = p22,d ∧ p29,a + p29,c + p29,d = p22,d + p22,b + p22,a)
(S22,29)

p32,a < p22,a ∨ p32,a + p32,b < p22,a + p22,b

∨ (p32,a = p22,a ∧ p32,a + p32,b = p22,a + p22,b)
(S22,32)

p12,c + p12,a ≤ p23,c + p23,a (S23,12)

p18,c + p18,d ≤ p23,d + p23,c (S23,18)

p19,d + p19,b + p19,a ≤ p23,d + p23,b + p23,a (S23,19)
p34,b < p24,c ∨ p34,b + p34,d < p24,c + p24,a

∨ (p34,b = p24,c ∧ p34,b + p34,d = p24,c + p24,a)
(S24,34)

p26,d + p26,c < p25,d + p25,b ∨ p26,d + p26,c + p26,a < p25,d + p25,b + p25,a

∨ (p26,d + p26,c = p25,d + p25,b ∧ p26,d + p26,c + p26,a = p25,d + p25,b + p25,a)
(S25,26)

p36,a < p25,a ∨ p36,a + p36,c < p25,a + p25,c

∨ (p36,a = p25,a ∧ p36,a + p36,c = p25,a + p25,c)
(S25,36)

p8,d < p26,a ∨ p8,d + p8,b < p26,a + p26,c

∨ (p8,d = p26,a ∧ p8,d + p8,b = p26,a + p26,c)
(S26,8)

p13,b + p13,a ≤ p27,c + p27,a (S27,13)
p19,d + p19,c < p27,d + p27,b ∨ p19,d + p19,c + p19,a < p27,d + p27,b + p27,a

∨ (p19,d + p19,c = p27,d + p27,b ∧ p19,d + p19,c + p19,a = p27,d + p27,b + p27,a)
(S27,19)

p32,d < p28,a ∨ p32,d + p32,b < p28,a + p28,c

∨ (p32,d = p28,a ∧ p32,d + p32,b = p28,a + p28,c)
(S28,32)
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p39,a < p28,a ∨ p39,a + p39,c < p28,a + p28,b

∨ (p39,a = p28,a ∧ p39,a + p39,c = p28,a + p28,b)
(S28,39)

p39,d < p29,a ∨ p39,d + p39,c < p29,a + p29,b

∨ (p39,d = p29,a ∧ p39,d + p39,c = p29,a + p29,b)
(S29,39)

p21,b + p21,a < p30,b + p30,a ∨ p21,b + p21,a + p21,d < p30,b + p30,a + p30,d

∨ (p21,b + p21,a = p30,b + p30,a ∧ p21,b + p21,a + p21,d = p30,b + p30,a + p30,d)
(S30,21)

p41,c < p30,c ∨ p41,c + p41,b + p41,a < p30,c + p30,b + p30,a

∨ (p41,c = p30,c ∧ p41,c + p41,b + p41,a = p30,c + p30,b + p30,a)
(S30,41)

p38,b + p38,d < p31,d + p31,b ∨ p38,b + p38,d + p38,c < p31,d + p31,b + p31,a

∨ (p38,b + p38,d = p31,d + p31,b ∧ p38,b + p38,d + p38,c = p31,d + p31,b + p31,a)
(S31,38)

p22,b + p22,a < p32,b + p32,a ∨ p22,b + p22,a + p22,d < p32,b + p32,a + p32,d

∨ (p22,b + p22,a = p32,b + p32,a ∧ p22,b + p22,a + p22,d = p32,b + p32,a + p32,d)
(S32,22)

p28,a < p32,d ∨ p28,a + p28,c + p28,d < p32,d + p32,b + p32,a

∨ (p28,a = p32,d ∧ p28,a + p28,c + p28,d = p32,d + p32,b + p32,a)
(S32,28)

p5,a < p33,a ∨ p5,a + p5,b < p33,a + p33,b

∨ (p5,a = p33,a ∧ p5,a + p5,b = p33,a + p33,b)
(S33,5)

p22,d + p22,c ≤ p33,d + p33,c (S33,22)
p24,c < p34,b ∨ p24,c + p24,a + p24,d < p34,b + p34,d + p34,a

∨ (p24,c = p34,b ∧ p24,c + p24,a + p24,d = p34,b + p34,d + p34,a)
(S34,24)

p9,a < p35,a ∨ p9,a + p9,b < p35,a + p35,b

∨ (p9,a = p35,a ∧ p9,a + p9,b = p35,a + p35,b)
(S35,9)

p21,c + p21,b + p21,a ≤ p35,c + p35,b + p35,a (S35,21)
p10,d < p36,a ∨ p10,d + p10,c < p36,a + p36,b

∨ (p10,d = p36,a ∧ p10,d + p10,c = p36,a + p36,b)
(S36,10)

p25,c + p25,a < p36,c + p36,a ∨ p25,c + p25,a + p25,d < p36,c + p36,a + p36,d

∨ (p25,c + p25,a = p36,c + p36,a ∧ p25,c + p25,a + p25,d = p36,c + p36,a + p36,d)
(S36,25)

p39,d + p39,c ≤ p36,d + p36,c (S36,39)
p42,d < p37,a ∨ p42,d + p42,b < p37,a + p37,b

∨ (p42,d = p37,a ∧ p42,d + p42,b = p37,a + p37,b)
(S37,42 (1))

p42,d < p37,c ∨ p42,d + p42,b < p37,c + p37,d

∨ (p42,d = p37,c ∧ p42,d + p42,b = p37,c + p37,d)
(S37,42 (2))

p2,c + p2,a < p39,c + p39,a ∨ p2,c + p2,a + p2,d < p39,c + p39,a + p39,d

∨ (p2,c + p2,a = p39,c + p39,a ∧ p2,c + p2,a + p2,d = p39,c + p39,a + p39,d)
(S39,2)

p29,a + p29,b < p39,d + p39,c ∨ p29,a + p29,b + p29,d < p39,d + p39,c + p39,a

∨ (p29,a + p29,b = p39,d + p39,c ∧ p29,a + p29,b + p29,d = p39,d + p39,c + p39,a)
(S39,29)

p36,d + p36,c < p39,d + p39,c ∨ p36,d + p36,c + p36,a < p39,d + p39,c + p39,a

∨ (p36,d + p36,c = p39,d + p39,c ∧ p36,d + p36,c + p36,a = p39,d + p39,c + p39,a)
(S39,36)

p31,d + p31,b + p31,a ≤ p41,c + p41,b + p41,a (S41,31)
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p3,d < p42,d ∨ p3,d + p3,b < p42,d + p42,b ∨ p3,d + p3,b + p3,a < p42,d + p42,b + p42,a

∨ (p3,d = p42,d ∧ p3,d + p3,b = p42,d + p42,b ∧ p3,d + p3,b + p3,a = p42,d + p42,b + p42,a)

(S42,3)
p11,d < p42,c ∨ p11,d + p11,b < p42,c + p42,a

∨ (p11,d = p42,c ∧ p11,d + p11,b = p42,c + p42,a)
(S42,11)

p24,b + p24,a ≤ p42,b + p42,a (S42,24)
p12,b + p12,a < p44,b + p44,a ∨ p12,b + p12,a + p12,d < p44,b + p44,a + p44,d

∨ (p12,b + p12,a = p44,b + p44,a ∧ p12,b + p12,a + p12,d = p44,b + p44,a + p44,d)
(S44,12)

p40,c + p40,d ≤ p44,d + p44,c (S44,40)
p31,c + p31,d < p45,b + p45,a ∨ p31,c + p31,d + p31,b < p45,b + p45,a + p45,c

∨ (p31,c + p31,d = p45,b + p45,a ∧ p31,c + p31,d + p31,b = p45,b + p45,a + p45,c)
(S45,31)

p20,c + p20,a ≤ p46,c + p46,a (S46,20)
p37,a + p37,c < p46,d + p46,b ∨ p37,a + p37,c + p37,d < p46,d + p46,b + p46,a

∨ (p37,a + p37,c = p46,d + p46,b ∧ p37,a + p37,c + p37,d = p46,d + p46,b + p46,a)
(S46,37)

p30,b + p30,a ≤ p47,b + p47,a (S47,30)

Table 3: The Strategy-Proofness conditions used in the impossibility proof.

Table 4 lists themanipulations that were used to obtain these strategyproofness conditions:
the first column gives the name of the manipulation condition in the form (Si,j), which
also contains the information which two profiles are involved in the manipulation (Ri and
Rj) The next columns contain the manipulating agent, her truthful preferences, and the
false preferences that she needs to submit. The last column gives the permutation of the
alternatives that yields Rj when applied to the manipulated instance of Ri.

Condition Agent Old Preferences New Preferences Permutation

(S1,2) 1 {c, d}, {a, b} {c, d}, a, b (a)(b)(c)(d)

(S1,19) 3 a, b, {c, d} {a, b}, {c, d} (a)(b)(c)(d)

(S2,1) 2 {c, d}, a, b {c, d}, {a, b} (a)(b)(c)(d)

(S2,38) 1 {a, c}, {b, d} {a, c}, b, d (a)(b)(c)(d)

(S4,8) 4 d, c, {a, b} c, d, {a, b} (a)(b)(c d)

(S4,18) 3 c, {a, b}, d {a, b, c}, d (a)(b)(c)(d)

(S4,47) 2 {a, d}, {b, c} {a, d}, c, b (a)(b)(c)(d)

(S5,7) 3 {a, c}, d, b a, c, d, b (a)(b)(c)(d)

(S5,10) 4 d, {a, b}, c {b, d}, a, c (a d)(b c)

(S5,17) 3 {a, c}, d, b {a, c}, {b, d} (a)(b)(c)(d)

(S6,19) 4 d, b, a, c {b, d}, a, c (a)(b)(c)(d)

(S6,42) 3 {a, c}, {b, d} c, a, {b, d} (a)(b)(c)(d)
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(S7,43) 3 a, c, d, b a, {c, d}, b (a d)(b c)

(S8,26) 3 d, {a, b}, c d, b, {a, c} (a d)(b c)

(S9,18) 2 {a, d}, c, b {a, d}, {b, c} (a)(b)(c)(d)

(S9,35) 1 {a, b}, {c, d} a, b, {c, d} (a)(b)(c)(d)

(S9,40) 1 {a, b}, {c, d} {a, b}, c, d (a)(b)(c)(d)

(S10,12) 3 {a, c}, d, b {a, c, d}, b (a d)(b c)

(S10,15) 4 {b, d}, a, c d, b, a, c (a d)(b c)

(S10,19) 4 {b, d}, a, c {b, d}, {a, c} (a d)(b c)

(S10,36) 2 {c, d}, {a, b} d, c, {a, b} (a d)(b c)

(S12,10) 4 {a, b, d}, c {b, d}, a, c (a d)(b c)

(S12,16) 3 {a, c}, d, b a, c, d, b (a)(b)(c)(d)

(S12,44) 2 {a, b}, {c, d} {a, b}, d, c (a)(b)(c)(d)

(S13,15) 3 {b, d}, a, c {b, d}, {a, c} (a)(b c)(d)

(S13,27) 4 a, b, d, c {a, b}, {c, d} (a)(b c)(d)

(S14,9) 4 a, d, c, b {a, d}, c, b (a)(b)(c)(d)

(S14,16) 2 d, c, {a, b} {c, d}, {a, b} (a)(b)(c d)

(S14,34) 3 {a, b, c}, d b, {a, c}, d (a)(b)(c d)

(S15,5) 4 a, c, d, b a, {c, d}, b (a d)(b c)

(S15,7) 3 {b, d}, a, c d, {a, b}, c (a)(b)(c)(d)

(S15,10) 4 a, c, d, b {a, c}, d, b (a d)(b c)

(S15,13) 2 {c, d}, {a, b} {c, d}, a, b (a)(b c)(d)

(S17,3) 3 {a, c}, {b, d} c, a, {b, d} (a)(b)(c)(d)

(S17,5) 3 {a, c}, {b, d} {a, c}, d, b (a)(b)(c)(d)

(S17,7) 3 {a, c}, {b, d} a, c, d, b (a)(b)(c)(d)

(S17,11) 3 {a, c}, {b, d} c, a, b, d (a)(b)(c)(d)

(S18,9) 2 {a, d}, {b, c} {a, d}, c, b (a)(b)(c)(d)

(S19,1) 1 {a, b}, {c, d} a, b, {c, d} (a)(b)(c)(d)

(S19,10) 4 {a, c}, {b, d} {a, c}, d, b (a d)(b c)

(S19,27) 2 {c, d}, {a, b} {c, d}, a, b (a)(b c)(d)

(S20,21) 3 a, c, {b, d} a, {c, d}, b (a c b d)

(S21,35) 3 c, {a, b}, d {a, b, c}, d (a)(b)(c)(d)

(S22,29) 3 d, {a, b}, c {b, d}, a, c (a d)(b c)

(S22,32) 4 a, b, {c, d} {a, b}, d, c (a)(b)(c)(d)

(S23,12) 3 {a, c}, {b, d} {a, c}, d, b (a)(b)(c)(d)

(S23,18) 2 {c, d}, {a, b} c, d, {a, b} (a)(b)(c d)

(S23,19) 4 {a, b, d}, c {b, d}, a, c (a)(b)(c)(d)

(S24,34) 3 c, a, {b, d} c, {a, d}, b (a d)(b c)

(S25,26) 2 {b, d}, a, c {b, d}, {a, c} (a)(b c)(d)

(S25,36) 4 a, c, {b, d} {a, c}, d, b (a)(b)(c)(d)
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(S26,8) 4 a, c, {b, d} a, {c, d}, b (a d)(b c)

(S27,13) 3 {a, c}, {b, d} a, c, d, b (a)(b c)(d)

(S27,19) 2 {b, d}, a, c {b, d}, {a, c} (a)(b c)(d)

(S28,32) 4 a, c, {b, d} a, {c, d}, b (a d)(b c)

(S28,39) 3 a, b, {c, d} {a, b}, d, c (a)(b c)(d)

(S29,39) 3 a, b, {c, d} {a, b}, d, c (a d)(b c)

(S30,21) 4 {a, b}, d, c a, b, {c, d} (a)(b)(c)(d)

(S30,41) 3 c, {a, b}, d {a, b, c}, d (a)(b)(c)(d)

(S31,38) 1 {b, d}, a, c {b, d}, c, a (a c)(b d)

(S32,22) 4 {a, b}, d, c a, b, {c, d} (a)(b)(c)(d)

(S32,28) 3 d, {a, b}, c d, b, {a, c} (a d)(b c)

(S33,5) 3 a, b, {c, d} {a, b}, {c, d} (a)(b)(c)(d)

(S33,22) 1 {c, d}, {a, b} d, c, {a, b} (a)(b)(c)(d)

(S34,24) 3 b, {a, d}, c b, d, {a, c} (a d)(b c)

(S35,9) 2 a, b, {c, d} {a, b}, {c, d} (a)(b)(c)(d)

(S35,21) 3 {a, b, c}, d c, {a, b}, d (a)(b)(c)(d)

(S36,10) 4 a, b, {c, d} {a, b}, {c, d} (a d)(b c)

(S36,25) 2 {a, c}, d, b a, c, {b, d} (a)(b)(c)(d)

(S36,39) 1 {c, d}, {a, b} {c, d}, a, b (a)(b)(c)(d)

(S37,42 (1)) 3 a, b, {c, d} a, b, d, c (a d)(b)(c)

(S37,42 (2)) 4 c, d, {a, b} c, d, b, a (a c d b)

(S39,2) 1 {a, c}, d, b {a, c}, {b, d} (a)(b)(c)(d)

(S39,29) 4 {c, d}, a, b d, c, {a, b} (a d)(b c)

(S39,36) 4 {c, d}, a, b {c, d}, {a, b} (a)(b)(c)(d)

(S41,31) 3 {a, b, c}, d {b, c}, a, d (a)(b)(c d)

(S42,3) 3 d, b, a, c d, {a, b}, c (a)(b)(c)(d)

(S42,11) 4 c, a, {b, d} c, {a, b}, d (a b)(c d)

(S42,24) 2 {a, b}, {c, d} b, a, {c, d} (a)(b)(c)(d)

(S44,12) 3 {a, b}, d, c {a, b}, {c, d} (a)(b)(c)(d)

(S44,40) 1 {c, d}, {a, b} c, d, {a, b} (a)(b)(c d)

(S45,31) 3 {a, b}, c, d b, a, {c, d} (a d)(b c)

(S46,20) 3 {a, c}, {b, d} a, c, {b, d} (a)(b)(c)(d)

(S46,37) 1 {b, d}, a, c {b, d}, {a, c} (a d)(b c)

(S47,30) 1 {a, b}, {c, d} {a, b}, d, c (a)(b)(c)(d)

Table 4: The manipulations required to obtain the Strategy-Proofness conditions in Table 3
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