
Verified Analysis of
Random Binary Tree Structures

Manuel Eberl[0000−0002−4263−6571], Max W. Haslbeck[0000−0002−9900−5746], and
Tobias Nipkow[0000−0003−0730−515X]

Technische Universität München, 85748 Garching bei München, Germany

Abstract This work is a case study of the formal verification and com-
plexity analysis of some famous probabilistic algorithms and data struc-
tures in the proof assistant Isabelle/HOL. In particular, we consider the
expected number of comparisons in randomised quicksort, the relation-
ship between randomised quicksort and average-case deterministic quick-
sort, the expected shape of an unbalanced random Binary Search Tree,
and the expected shape of a Treap. The last two have, to our knowledge,
not been analysed using a theorem prover before and the last one is of
particular interest because it involves continuous distributions.

1 Introduction

This paper conducts verified analyses of a number of classic probabilistic al-
gorithms and data structures related to binary search trees. It is part of a con-
tinuing research programme to formalise classic data structure analyses [1,2,3],
especially for binary search trees, by adding randomisation. The key novel contri-
butions of the paper are readable (with one caveat, discussed in the conclusion)
formalised analyses of

– the precise expected number of comparisons in randomised quicksort
– the relationship between the average-case behaviour of deterministic quick-

sort and the distribution of randomised quicksort
– the expected path length and height of a random binary search tree
– the expected shape of a treap, which involves continuous distributions.

The above algorithms are shallowly embedded and expressed using the Giry
monad, which allows for a natural and high-level presentation. All verifications
were carried out in Isabelle/HOL [4,5].

After an introduction to the representation of probability theory in Isa-
belle/HOL, the core content of the paper consists of three sections that analyse
quicksort, random binary search trees, and treaps, respectively. The correspond-
ing formalisations can be found in the Archive of Formal Proofs [6,7,8].

2 Probability Theory in Isabelle/HOL

2.1 Measures and Probability Mass Functions

The foundation for measure theory (and thereby probability theory) in Isabelle/
HOL was laid by Hölzl [9]. This approach is highly general and flexible, allowing
also measures with uncountably infinite support (e. g. normal distributions on
the reals) and has been used for a number of large formalisation projects re-
lated to randomisation, e. g. Ergodic theory [10], compiling functional programs
to densities [11], Markov chains and decision processes [12], and cryptographic
algorithms [13].

Initially we shall only consider probability distributions over countable sets.
In Isabelle, these are captured as probability mass functions (PMFs). A PMF is
simply a function that assigns a probability to each element, with the property
that the probabilities are non-negative and sum up to 1. For any HOL type α,
the type α pmf denotes the type of all probability distributions over values of
type α with countable support.

Working with PMFs is quite pleasant, since we do not have to worry about
measurability of sets or functions. Since everything is countable, we can always
choose the power set as the measurable space, which means that everything is
always trivially measurable.

Later, however, we will also need continuous distributions. For these, there
exists a type α measure, which describes a measure-theoretic measure over ele-
ments of type α. Such a measure is formally defined as a triple consisting of a
carrier set Ω, a σ-algebra on Ω (which we call the set of measurable sets), and
a measure function µ : α→ ennreal, where ennreal is the type of extended non-
negative real numbers R≥0 ∪ {∞}. Of course, since we only consider probability
measures here, our measures will always return values between 0 and 1.

One problem with these general measures (which are only relevant for Sec-
tion 5), is that we often need to annotate the corresponding σ-algebras and prove
that everything we do with a distribution is in fact measurable. These details
are unavoidable on a formal level, but typically very uninteresting to a human:
There is usually a ‘natural’ choice for these σ-algebras and any set or operation
that can be written down is typically measurable in some adequate sense. For
the sake of readability, we will therefore omit everything related to measurability
in this presentation.

Table 2.1 gives an overview of the notation that we use for PMFs and general
measures. Although we allow ourselves some more notational freedoms in this
paper, these are purely syntactical changes designed to make the presentation
easier without introducing additional notation.

2.2 The Giry Monad

Specifying probabilistic algorithms compositionally requires a way to express
sequential composition of randomised choice. The standard way to do this is
the Giry monad [14]. A detailed explanation of this (especially in the context

2

PMFs Measures Meaning

pmf p x probability of x in distribution p
set_pmf p support of p, i. e. {x | p(x) > 0}
measure_pmf.prob p X emeasure M X probability of set X
measure_pmf.expectation p f expectation M f expectation of f :: α→ R
map_pmf g p distr g M image measure under g :: α→ β

pmf_of_set A uniform_measure A uniform distribution over A
pair_pmf p q M ⊗N binary product measure⊗

x∈AM(x) indexed product measure

Table 1. Basic operations on PMFs and general measures. The variables p :: α pmf
and M :: α measure denote an arbitrary PMF (resp. measure).

of Isabelle/HOL) can be found in an earlier paper by Eberl et al. [11]. For the
purpose of this paper, we only need to know that the Giry monad provides
functions

return :: α→ α pmf bind :: α pmf→ (α→ β pmf)→ β pmf

(and analogously for α measure) where return x gives us the singleton distribu-
tion where x is chosen with probability 1 and bind p f composes two distributions
in the intuitive sense of randomly choosing a value x according to the distribu-
tion p and then returning a value randomly chosen according to the distribution
f(x).

For better readability, Isabelle supports a Haskell-like do-notation as syn-
tactic sugar for bind operations where e. g.

bind A (λx. bind B (λy. return (x+ y)))

can be written succinctly as

do {x← A; y ← B; return (x+ y)} .

3 Quicksort

We now show how to define and analyse quicksort [15,16] (in its functional
representation) within this framework. Since all of the randomisation is discrete
in this case, we can restrict ourselves to PMFs for the moment.

For the sake of simplicity (and because it relates to binary search trees, which
we will treat later), we shall only treat the case of sorting lists without repeated
elements. (See the end of this section for further discussion of this point.)

As is well known, quicksort has quadratic worst-case performance if the pivot
is chosen poorly. Using the true median as the pivot would solve this, but is
impractical. Instead, a simple alternative is to choose the pivot randomly, which
is the variant that we shall analyse first.

3

3.1 Randomised Quicksort

Intuitively, the good performance of randomised quicksort can be explained by
the fact that a random pivot will usually not be among the most extreme values
of the list, but somewhere in the middle, which means that, on average, the size
of the lists is reduced significantly in every recursion step.

To make this more rigorous, let us look at the definition of the algorithm in
Isabelle:

Definition 1 (Randomised quicksort).

rquicksort R xs =
if xs = [] then

return []
else do {
i← pmf_of_set {0 . . . |xs| − 1}
let x = xs ! i
let xs′ = delete_index i xs
ls← rquicksort R [y | y ← xs’, (y, x) ∈ R]
rs← rquicksort R [y | y ← xs’, (y, x) /∈ R]
return (ls@ [x] @ rs)

}

Here, @ denotes list concatenation and xs ! i denotes the i-th element of the list
xs, where 0 ≤ i < |xs|. The delete_index function removes the i-th element of a
list, and the parameter R is a linear ordering represented as a set of pairs.

It is easy to prove that all of the lists that can be returned by the algorithm
are sorted w. r. t. R. To analyse its running time, its actual Isabelle definition was
extended to also count the number of element comparisons made, i. e. to return
an (α list × nat) pmf. The base case makes 0 comparisons and the recursive
case makes |xs| − 1 + n1 + n2 comparisons, where n1 and n2 are the numbers of
comparisons made by the recursive calls. This could easily be encapsulated in a
resource monad (as we have done elsewhere [3] for more complex code), but it
is not worth the effort in this case.

For an element x and some list xs, we call the number of elements of xs
that are smaller than x the rank of x w. r. t. xs. In lists with distinct elements,
each element can clearly be uniquely identified by either its index in the list or
its rank w. r. t. that list, so choosing an element uniformly at random, choosing
its index uniformly at random, or choosing a rank uniformly at random are all
interchangeable.

In the above algorithm, the length of ls is simply the rank r of the pivot, and
the length of rs is simply |xs|− 1− r, so choosing the pivot uniformly at random
means that the length of ls is also distributed uniformly between 0 and |xs| − 1.
From this, we can see that the distribution of the number of comparisons does
not actually depend on the content of the list or the ordering R at all, but only
on the length of the list, and we can find the following recurrence for it:

4

Definition 2 (Cost of randomised quicksort).

rqs_cost 0 = return 0
rqs_cost (n+ 1) =
do {
r ← pmf_of_set {0 . . . n}
a← rqs_cost r
b← rqs_cost (n− r)
return (n+ a+ b)

}

For any list xs with no repeated elements and a linear ordering R, we can easily
show the equation

map_pmf snd (rquicksort R xs) = rqs_cost |xs| ,

i. e. projecting out the number of comparisons from our cost-aware randomised
quicksort yields the distribution given by rqs_cost.

Due to the recursive definition of rqs_cost, we can easily show that its ex-
pected value, which we denote by Q(n), satisfies the characteristic recurrence

Q(n+ 1) = n+
1

n+ 1

(
n∑

i=0

Q(i) +Q(n− i)

)
,

or, equivalently,

Q(n+ 1) = n+
2

n+ 1

(
n∑

i=0

Q(i)

)
.

This is often called the quicksort recurrence. Cichoń [17] gave a simple way of
solving this by turning it into a linear recurrence

Q(n+ 1)

n+ 2
=

2n

(n+ 1)(n+ 2)
+
Q(n)

n+ 1
,

which gives us (by telescoping)

Q(n)

n+ 1
= 2

n∑
k=1

k − 1

k(k + 1)
= 4Hn+1 − 2Hn − 4

and thereby the closed-form solution

Q(n) = 2(n+ 1)Hn − 4n ,

where Hn is the n-th harmonic number. We can use the well-known asymptot-
ics Hn ∼ lnn + γ (where γ ≈ 0.5772 is the Euler–Mascheroni constant) from
the Isabelle library and obtain Q(n) ∼ 2n lnn, which shows that the expected
number of comparisons is logarithmic.

5

Remember, however, that we only considered lists with no repeated elements.
If there are any repeated elements, the performance of the above algorithm can
deteriorate to quadratic time. This can be fixed easily by using a three-way par-
titioning function instead, although this makes things slightly more complicated
since the number of comparisons made now depends on the content of the list
and not just its length. The only real difference in the cost analysis is that the
lists in the recursive call no longer simply have lengths r and n − r − 1, but
can also be shorter if the pivot is contained in the list more than once. We can
still show that the expected number of comparisons is at most Q(n) in much
the same way as before (and our entry [6] in the Archive of Formal Proofs does
contain that proof), but we shall not go into more detail here.

Comparing our proof to those in the literature, note that both Cormen et
al. [18] and Knuth [19] also restrict their analysis to distinct elements. Cormen et
al. use a non-compositional approach with indicator variables and only derive the
logarithmic upper bound, whereas Knuth’s analysis counts the detailed number
of different operations made by a particular implementation of the algorithm in
MIX. His general approach is very similar to the one presented here.

3.2 Average-Case of Non-Randomised Quicksort

The above results carry over directly to the average-case analysis of non-ran-
domised quicksort (again, we will only consider lists with distinct elements).
Here, the pivot is chosen deterministically; we always choose the first element
for simplicity. This gives us the following definitions of quicksort and its cost:

Definition 3 (Deterministic quicksort and its cost).

quicksort R [] = []
quicksort R (x# xs) = quicksort R [y | y ← xs, (y, x) ∈ R] @

[x] @ quicksort R [y | y ← xs, (y, x) /∈ R]

qs_cost R [] = 0
qs_cost R (x# xs) = |xs|+

qs_cost R [y | y ← xs, (y, x) ∈ R] + qs_cost R [y | y ← xs, (y, x) /∈ R]

Interestingly, the number of comparisons made on a randomly-permuted input
list has exactly the same distribution as the number of comparisons in random-
ised quicksort from before. The underlying idea is that when randomly permuting
the input, the randomness can be ‘deferred’ to the first point where an element
is actually inspected, which means that choosing the first element of a randomly-
permuted list still makes the pivot essentially random.

The formal proof of this starts by noting that choosing a random permutation
of a non-empty finite set A is the same as first choosing the first list element
x ∈ A uniformly at random and then choosing a random permutation of A \ {x}
as the remainder of the list, allowing us to pull out the pivot selection. Then,
we note that taking a random permutation of A \ {x} and partitioning it into
elements that are smaller and bigger than x is the same as first partitioning the

6

set A \ {x} into {y ∈ A \ {x} | (y, x) ∈ R} and {y ∈ A \ {x} | (y, x) /∈ R} and
choosing random permutations of these sets independently.

This last step, which interchanges partitioning and drawing a random per-
mutation, is probably the most crucial one and one that we will need again later,
so we present the corresponding lemma in full here. Let partition P xs be the
function that splits the list xs into the pair of sub-sequences that satisfy (resp.
do not satisfy) the predicate P . Then, we have:

Lemma 1 (Partitioning a randomly permuted list).

assumes finite A
shows map_pmf (partition P) (pmf_of_set (permutations_of_set A)) =

pair_pmf (pmf_of_set (permutations_of_set {x ∈ A. P x}))
(pmf_of_set (permutations_of_set {x ∈ A. ¬P x}))

This lemma is easily proven directly by extensionality, i. e. fixing permutations
xs of {x ∈ A. P x} and ys of {x ∈ A. ¬P x} and computing their probabilities
in the two distributions and noting that they are the same.

With this, the proof of the following theorem is just a straightforward induc-
tion on the recursive definition of rqs_cost:

Theorem 1 (Cost distribution of randomised quicksort). For every lin-
ear order R on a finite set A, we have:

map_pmf (qs_cost R) (pmf_of_set (permutations_of_set A)) = rqs_cost |A|

Thus, the cost distribution of deterministic quicksort applied to a randomly-
permuted list is the same as that of randomised quicksort. In particular, the
results about the logarithmic expectation of rqs_cost carry over directly.

4 Random Binary Search Trees

4.1 Preliminaries

We now turn to another average-case complexity problem that is somewhat
related to quicksort, though not in an obvious way. We consider node-labelled
binary trees, defined by the algebraic datatype

datatype α tree = Leaf | Node (α tree) α (α tree) .

We denote Leaf by 〈〉 and Node l x r by 〈l, x, r〉. When the values of the tree
have some linear ordering, we say that the tree is a binary search tree (BST)
if, for every node with some element x, all of the values in the left sub-tree are
smaller than x and all of the values in the right sub-tree are larger than x.

Inserting elements can be done by performing a search and, if the element
is not already in the tree, adding a node at the leaf at which the search ends.
We denote this operation by bst_insert. Note that these are simple, unbalanced
BSTs and our analysis will focus on what happens when elements are inserted

7

into them in random order. We call the tree that results from adding elements
of a set A to an initially empty BST in random order a random BST. This can
also be seen as a kind of ‘average-case’ analysis of BSTs.

To analyse random BSTs, let us first examine what happens when we insert
a list of elements into an empty BST from left to right; formally:

Definition 4 (Inserting a list of elements into a BST).

bst_of_list xs = fold bst_insert xs 〈〉

Let x be the first element of the list. This element will become the root of the
tree and will never move again. Similarly, the next element will become either
the left or right child of x and will then also never move again and so on. It is
also clear that no elements greater than x will end up in the left sub-tree of x
at any point in the process, and no elements smaller in the right sub-tree. This
leads us to the following recurrence for bst_of_list:

Lemma 2 (Recurrence for bst_of_list).

bst_of_list [] = 〈〉
bst_of_list (x# xs) =
〈bst_of_list [y | y ← xs, y < x], x, bst_of_list [y | y ← xs, y > x]〉

We can now formally define our notion of ‘random BST’:

Definition 5 (Random BSTs).

random_bst A =
map_pmf bst_of_list (pmf_of_set (permutations_of_set A))

By re-using Lemma 1, we easily get the following recurrence:

Lemma 3 (A recurrence for random BSTs).

random_bst A =
if A = {} then return 〈〉 else do {
x← pmf_of_set A
l← random_bst {y ∈ A | y < x}
r ← random_bst {y ∈ A | y > x}
return 〈l, x, r〉

}

We can now analyse some of the properties of such a random BST. In partic-
ular, we will look at the expected height and the expected internal path length,
and we will start with the latter since it is easier.

8

4.2 Internal Path Length

The internal path length (IPL) is essentially the sum of the lengths of all the
paths from the root of the tree to each node. Alternatively, one can think of it
the sum of all the level numbers of the nodes in the tree, where the root is on
the 0-th level, its immediate children are on the first level etc.

One reason why this number is important is that it is related to the time it
takes to access a random element in the tree: the number of steps required to
access some particular element x is equal to the number of that element’s level,
so if one chooses a random element in the tree, the average number of steps
needed to access it is exactly the IPL divided by the size of the tree.

The IPL can be defined recursively by noting that ipl 〈〉 = 0 and ipl 〈l, x, r〉 =
ipl l+ ipl r+ |l|+ |r|. With this, we can show the following theorem by a simple
induction over the recurrence for random_bst:

Theorem 2 (Internal path length of a random BST).

map_pmf ipl (random_bst A) = rqs_cost |A|

Thus, the IPL of a random BST has the exact same distribution as the number
of comparisons in randomised quicksort, which we already analysed before. This
analysis was also carried out by Ottman and Widmayer [20], who also noted its
similarity to the analysis of quicksort.

4.3 Height

The height of a random BST is more difficult to analyse. By our definition, an
empty tree (i. e. a leaf) has height 0, and the height of a non-empty tree is the
maximum of the heights of its left and right sub-trees, plus one. It is easy to
show that the height distribution only depends on the number of elements and
not their actual content, so let H(n) denote the height of a random BST with n
nodes.

The asymptotics of its expectation and variance were found by Reed [21],
who showed that E[H(n)] = α lnn − β ln lnn + O(1) and Var[H(n)] ∈ O(1)
where α ≈ 4.311 is the unique real solution of α ln(2e/α) = 1 with α ≥ 2 and
β = 3α/(2α− 2) ≈ 1.953. The proof of this is quite intricate, so we will restrict
ourselves to showing that E[H(n)] ≤ 3

ln 2 lnn ≈ 4.328 lnn, which is enough to
see that the expected height is logarithmic.

Before going into a precise discussion of the proof, let us first undertake a
preliminary exploration of how we can analyse the expectation of H(n). The
base cases H(0) = 0 and H(1) = 1 are obvious. For any n > 1, the recursion
formula for random_bst suggests:

E[H(n)] = 1 +
1

n

n−1∑
k=0

E[max(H(k), H(n− k − 1))]

9

The max term is somewhat problematic, since the expectation of the maximum
of two random variables is, in general, difficult to analyse. A relatively obvious
bound is E[max(A,B)] ≤ E[A] + E[B], but that will only give us

E[H(n)] ≤ 1 +
1

n

n−1∑
k=0

(E[H(k)] + E[H(n− k − 1)])

and if we were to use this to derive an explicit upper bound on E[H(n)] by
induction, we would only get the trivial upper bound E[H(n)] ≤ n.

A trick suggested e. g. by Cormen et al. [18] (which they attribute to Javed
Aslam [22]) is to instead use the exponential height (which we shall denote by
eheight) of the tree, which, in terms of our height, is defined as 0 for a leaf
and 2height(t)−1 for a non-empty tree. The advantage of this is that it decreases
the relative error that we make when we bound E[max(A,B)] by E[A] + E[B]:
this error is precisely E[min(A,B)], and if A and B are heights, these heights
only differ by a small amount in many cases. However, even a height difference
of 1 will lead to a relative error in the exponential height of at most 1

2 , and
considerably less than that in many cases. This turns out to be enough to obtain
a relatively precise upper bound.

Let H ′(n) be the exponential height of a random BST. Since x 7→ 2x is
convex, any upper bound on H ′(n) can be used to derive an upper bound on
H(n) by Jensen’s inequality:

2E[H(n)] = 2 · 2E[H(n)−1] ≤ 2E[2H(n)−1] = 2E[H ′(n)]

Therefore, we have
E[H(n)] ≤ log2 E[H

′(n)] + 1 .

In particular, a polynomial upper bound on E[H ′(n)] directly implies a logar-
ithmic upper bound on E[H(n)].

It remains to analyse H ′(n) and find a polynomial upper bound for it. As
a first step, note that if l and r are not both empty, the exponential height
satisfies the recurrence eheight 〈l, x, r〉 = 2 · max (eheight l) (eheight r). When
we combine this with the recurrence for random_bst, the following recurrence
for H ′(n) suggests itself:

Definition 6 (The exponential height of a random BST).

eheight_rbst 0 = return 0
eheight_rbst 1 = return 1

n > 1 =⇒ eheight_rbst n =
do {
k ← pmf_of_set {0 . . . n− 1}
h1 ← eheight_rbst k
h2 ← eheight_rbst (n− k − 1)
return (2 ·max h1 h2)

}

10

Showing that this definition is indeed the correct one can be done by a straight-
forward induction following the recursive definition of random_bst:

Lemma 4 (Correctness of eheight_rbst).

finite A =⇒ eheight_rbst |A| = map_pmf eheight (random_bst A)

Using this, we note that for any n > 1:

E[H ′(n)] =
2

n

n−1∑
k=0

E[max(H ′(k), H ′(n− k − 1))]

≤ 2

n

n−1∑
k=0

E[H ′(k) +H ′(n− k − 1)]

=
2

n

(
n−1∑
k=0

E[H ′(k)] +
n−1∑
k=0

E[H ′(n− k − 1)]

)
=

4

n

n−1∑
k=0

E[H ′(k)]

However, we still have to find a suitable polynomial upper bound to complete
the induction argument. If we had some polynomial P (n) that fulfils 0 ≤ P (0),
1 ≤ P (1), and the recurrence P (n) = 4

n

∑n−1
k=0 P (k) , the above recursive estimate

for E[H ′(n)] would directly imply E[H ′(n)] ≤ P (n) by induction. Cormen et al.
give the following polynomial, which satisfies all these conditions and makes
everything work out nicely:

P (n) =
1

4

(
n+ 3

3

)
=

1

24
(n+ 1)(n+ 2)(n+ 3)

Putting all of these together gives us the following theorem:

Theorem 3 (Asymptotic expectation of H(n)).

E[H(n)] ≤ log2 E[H
′(n)] + 1 ≤ log2 P (n) + 1 ∼ 3

ln 2
lnn

5 Treaps

As we have seen, BSTs have the nice property that even without any explicit
balancing, they tend to be fairly balanced if elements are inserted into them
in random order. However, if, for example, the elements are instead inserted in
ascending order, the tree degenerates into a list and no longer has logarithmic
height. One interesting way to prevent this is to use a treap instead, which we
shall introduce and analyse now.

5.1 Definition

A treap is a binary tree in which every node contains both an element and an
associated priority and which is a BST w. r. t. the elements and a heap w. r. t. the

11

priorities (i. e. the root is always the node with the lowest priority). This kind
of structure was first described by Vuillemin [23], who called it a cartesian tree,
and independently studied further by Seidel and Aragon [24], who noticed its
relationship to random BSTs. Due to space constraints, we shall not go into how
insertion of elements (denoted by ins) works, but it is fairly easy to implement.

An interesting consequence of these treap conditions is that, as long as all of
the priorities are distinct, the shape of a treap is uniquely determined by the set
of its elements and their priorities. Since the sub-trees of a treap must also be
treaps, this uniqueness property follows by induction and we can construct this
unique treap for a given set using the following simple algorithm:

Lemma 5 (Constructing the unique treap for a set). Let A be a set of
pairs of type α × R where the second components are all distinct. Then there
exists a unique treap treap_of A whose elements are precisely A, and it satisfies
the recurrence

treap_of A =
if A = {} then 〈〉 else
let x = arg_min_on snd A
in 〈treap_of {y ∈ A | fst y < fst x}, x, treap_of {y ∈ A | fst y > fst x}〉

where arg_min_on f A is some a ∈ A such that f(a) is minimal on A. In our
case the choice of a is unique by assumption.

This is very similar to the recurrence for bst_of_list that we saw earlier. In fact,
it is easy to prove that if we forget about the priorities in the treap and consider
it as a simple BST, the resulting tree is exactly the same as if we had first sorted
the keys by increasing priority and then inserted them into an empty BST in
that order. Formally, we have the following lemma:

Lemma 6 (Connection between treaps and BSTs). Let p be an injective
function that associates a priority to each element of a list xs. Then

map_tree fst (treap_of {(x, p(x)) | x ∈ set xs}) = bst_of_list (sort_key p xs) ,

where sort_key sorts a list in ascending order w. r. t. the given priority function.

Proof. By induction over xs′ := sort_key p xs, using the fact that sorting w. r. t.
distinct priorities can be seen as a selection sort: The list xs′ consists of the
unique minimum-priority element x, followed by sort_key p (remove1 x xs),
where remove1 deletes the first occurrence of an element from a list.

With this and Lemma 2, the recursion structure of the right-hand side is
exactly the same as that of the treap_of from Lemma 5. �

This essentially allows us to build a BST that behaves as if we inserted the
elements by ascending priority regardless of the order in which they were actually
inserted. In particular, we can assign each element a random priority upon its
insertion, which turns our treap (a deterministic data structure for values of type

12

(α × R) set) into a randomised treap, which is a randomised data structure for
values of type α that has the same distribution as a random BST with the same
content.

One caveat is that for all the results so far, we assumed that no two distinct
elements have the same priority, and, of course, without that assumption, we lose
all these nice properties. If the priorities in our randomised treap are chosen from
some discrete probability distribution, there will always be some non-zero prob-
ability that they are not distinct. For this reason, treaps are usually described in
the literature as using a continuous distribution (e. g. uniformly-distributed real
numbers between 0 and 1), even though this cannot be implemented faithfully
on an actual computer. We shall do the same here, since it makes the analysis
much easier.1

The argument goes as follows:

1. Choosing the priority of each element randomly when we insert it is the
same as choosing all the priorities beforehand (i. i. d. at random) and then
inserting the elements into the treap deterministically.

2. By the theorems above, this is the same as choosing the priorities i. i. d. at
random, sorting the elements by increasing priority, and then inserting them
into a BST in that order.

3. By symmetry considerations, choosing priorities i. i. d. for all elements and
then looking at the linear ordering defined by these priorities is the same as
choosing one of the n! possible linear orderings uniformly at random.

4. Thus, inserting a list of elements into a randomised treap is the same as
inserting them into a BST in random order.

5.2 The Measurable Space of Trees

One complication when formalising treaps that is typically not addressed in
pen-and-paper accounts is that since we will randomise over priorities, we need
to talk about continuous distributions of trees, i. e. distributions of type (α ×
R) tree measure. For example, if we insert the element x into an empty treap with
a priority that is uniformly distributed between 0 and 1, we get a distribution
of trees with the shape 〈〈〉, (x, p), 〈〉〉 where p is uniformly distributed between 0
and 1.

In order to be able to express this formally, we need a way to lift some
measurable space M to a measurable space T (M) of trees with elements from
M attached to their nodes. Of course, we cannot just pick any measurable space:
for our treap operations to be well-defined, all the basic tree operations need to
be measurable w. r. t. T (M); in particular:

– the constructors Leaf and Node, i. e. we need {Leaf} ∈ T (M) and Node must
be T (M)⊗M⊗ T (M)–T (M)-measurable

1 In fact, any non-discrete probability distribution works, where by ‘non-discrete’ we
mean that all singleton sets have probability 0. In the formalisation, however, we
restricted ourselves to the case of a uniform distribution over a real interval.

13

– the projection functions, i. e. selecting the value/left sub-tree/right sub-tree
of a node; e. g. selecting a node’s value must be (T (M)\{〈〉})–M -measurable

– primitively recursive functions involving only measurable operations must
also be measurable; we will need this to define e. g. the insertion operation

We can construct such a measurable space by taking the σ-algebra that is gen-
erated by certain cylinder sets: consider a tree whose nodes each have an M -
measurable set attached to them. Then this tree can be ‘flattened’ into the set of
trees of the same shape where each node has a single value from the correspond-
ing set in t attached to it. Then we define T (M) to be the measurable space
generated by all these cylinder sets, and prove that all the above-mentioned
operations are indeed measurable.

5.3 Randomisation

In order to achieve a good height distribution on average, the priorities of a treap
need to be chosen randomly. Since we do not know how many elements will be
inserted into the tree in advance, we need to draw the priority to assign to an
element when we insert it, i. e. insertion is now a randomised operation.

Definition 7 (Randomised insertion into a treap).

rins :: α→ α treap→ α treap measure
rins x t = do {p← uniform_measure {0 . . . 1}; return (ins x p t)}

Since we would like to analyse what happens when we insert a large number of
elements into an initially empty treap, we also define the following ‘bulk insert’
operation that inserts a list of elements into the treap from left to right:

rinss :: α list→ α treap → α treap measure
rinss [] t = return t
rinss (x# xs) t = do {t′ ← rins x t; rinss xst′}

Note that, from now on, we will again assume that all of the elements that
we insert are distinct. This is not really a restriction, since inserting duplicate
elements does not change the tree, so we can just drop any duplicates from the
list without changing the result. Similarly, the uniqueness property of treaps
means that after deleting an element, the resulting treap is exactly the same as
if the element had never been inserted in the first place, so even though we only
analyse the case of insertions without duplicates, this extends to any sequence
of insertion and deletion operations (although we do not show this explicitly).

The main result, as sketched above, shall be that after inserting a certain
number of distinct elements into the treap and then forgetting about their prior-
ities, we get a BST that is distributed identically to a random BST with the same
elements, i. e. the treap behaves as if we had inserted the elements in random
order. Formally, this can be expressed like this:

14

Theorem 4 (Connecting randomised treaps to random BSTs).

distr (rinss xs 〈〉) (map_tree fst) = random_bst (set xs)

Proof Let U denote the uniform distribution of real numbers between 0 and 1
and UA denote a vector of i. i. d. distributions U , indexed by A:

U := uniform_measure {0 . . . 1} UA :=
⊗

A
U

The first step is to show that our bulk-insertion operation rinss is equivalent
to first choosing random priorities for all the elements at once and then inserting
them all (with their respective priorities) deterministically:

rinss xs t = distr U set xs (λp. foldl (λt x. ins x (p(x)) t) t xs)

= distr U set xs (λp. treap_of [(x, p(x)) | x← xs])

The first equality is proved by induction over xs, pulling out one insertion in
the induction step and moving the choice of the priority to the front. This is
intuitively obvious, but the formal proof is nonetheless rather tedious, mostly
because of the issue of having to prove measurability in every single step. The
second equality follows from the uniqueness of treaps.

Next, we note that the priority function returned by U set xs is almost surely
injective, so we can apply Lemma 6 and get:

distr (rinss xs 〈〉) (map_tree fst) =

distr U set xs (λp. bst_of_list (sort_key p xs)

The next key lemma is the following, which holds for any finite set A:

distr UA (linorder_from_keys A) = uniform_measure (linorders_on A)

This essentially says that choosing priorities for all elements of A and then
looking at the ordering on A that these priorities induce will give us the uniform
distribution on all the |A|! possible linear ordering relations on A. In particular,
this means that that relation will be linear with probability 1, i. e. the priorities
will almost surely be injective. The proof of this is a simple symmetry argument:
given any two linear orderings R and R′ of A, we can find some permutation π
of A that maps R′ to R. However, UA is stable under permutation. Therefore,
R and R′ have the same probability, and since this holds for all R, R′, the
distribution must be the uniform distribution.

This brings us to the last step: Proving that sorting our list of elements by
random priorities and then inserting them to a BST is the same as inserting
them in random order (in the sense of inserting them in the order given by a
randomly-permuted list):

distr U set xs (λp. bst_of_list (sort_key p xs) =
distr (uniform_measure (permutations_of_set (set xs))) bst_of_list

15

Here we use the fact that priorities chosen uniformly at random induce a uni-
formly random linear ordering, and that sorting a list with such an ordering
produces permutations of that list uniformly at random. The proof of this in-
volves little more than rearranging and using some obvious lemmas on sort_key
etc. Now the right-hand side is exactly the definition of a random BST (up to a
conversion between pmf and measure), which concludes the proof. �

6 Randomised BSTs

Another approach to use randomisation in order to obtain a tree data structure
that behaves essentially like a random BST irrespectively of the order of insertion
are the Randomised BSTs introduced by Martinez and Roura [25]. We will call
them MR trees from now on. The key differences between randomized treaps
and MR trees are:

The randomness in treaps lies in the priorities associated with each entry.
This priority is chosen once for each key and never modified. The algorithms that
operate on the tree itself (insertion, deletion, etc.) are completely deterministic;
their randomness comes only from the random priorities that were chosen in
advance.

In MR trees, on the other hand, there is no extra information associated to the
nodes. The randomness is introduced through coin flips in every recursive step
of the tree operations (insertion, deletion, etc). Unlike with treaps, the results of
these random choices are not stored in the tree explicitly (although they are, of
course, implicitly present in the tree’s structure). Another key difference is that,
seeing as they are coin flips, the random choices that are made are discrete.

Note that while we said above that MR trees do not contain any additional
new information, it is necessary to add cached information for an efficient im-
plementation: the precise coin weights at each step depend on the total number
of nodes in the tree; since this number takes linear time to compute and we are
aiming for logarithmic time, it needs to be cached in the node itself. However,
unlike with treaps, this, this caching can be ignored completely in the correctness
analysis of the algorithm. It could easily be added in a refinement step later.

Let us now look at the implementation of the operations themselves. For
a more didactic and informal introduction, we refer the reader to the original
presentation by Martinez and Roura [25].

6.1 Auxiliary Operations

Splitting First, we need the following deterministic auxiliary function that
splits a BST into two trees consisting of all the elements that are strictly smaller
(resp. strictly greater) than some fixed element x.

split_bst _ 〈〉 = (〈〉, 〈〉)
split_bst x 〈l, y, r〉 =
if y < x then

16

case split_bst x r of (t1, t2)⇒ (〈l, y, t1〉, t2)
else if y > x then
case split_bst x l of (t1, t2)⇒ (t1, 〈t1, y, r〉)

else
(l, r)

This operation preserves the ‘random BST’ property in the following sense:

map_pmf (split_bst x) (random_bst A) =
pair_pmf (random_bst {y ∈ A | y < x}) (random_bst {y ∈ A | y > x})

where
pair_pmf P Q = do {x← P ; y ← Q; return (x, y)}

is the discrete product measure, analogous to M ⊗N before.
For convenience, we additionally define a variant

split_bst’ x t = (x ∈ t, split_bst x t)

that additionally tracks whether x itself was present in the original tree or not.

Joining Next, we define a kind of inverse operation for split_bst that computes
the union of two BSTs t1 and t2 under the precondition that all values in t1 are
strictly smaller than those in t2. The idea is essentially to build up the tree
top-down, flipping a weighted coin in each step to determine whether to insert
a branch from t1 or from t2 as the next element:

mrbst_join 〈〉 t2 = t2
mrbst_join t1 〈〉 = t1
mrbst_join t1 t2 =

do {
b← bernoulli_pmf

(
|t1|

|t1|+ |t2|

)
if b then
case t1 of 〈l, x, r〉 ⇒ do {r′ ← mrbst_join r t2; return 〈l, x, r′〉}

else
case t2 of 〈l, x, r〉 ⇒ do {l′ ← mrbst_join t1 l; return 〈l′, x, r〉}

}

This operation fulfils the following correctness theorem:

Theorem 5. If t1 and t2 are BSTs such that every element of t1 is smaller
than any element in t2, then the result of mrbst_join t1 t2 is also a BST and its
elements are the unions of those of t1 and t2. In Isabelle notation:

theorem
assumes t′ ∈ set_pmf (mrbst_join t1 t2) and bst t1 and bst t2
assumes ∀x∈set_tree t1. ∀y∈set_tree t2. x < y

17

shows bst t′ and set_tree t′ = set_tree t1 ∪ set_tree t2

Moreover, if t1 and t2 are random BSTs, then mrbst_join t1 t2 is as well, i. e.:

theorem
assumes finite A and finite B and ∀x∈A. ∀y∈B. x < y

shows do {t1 ← random_bst A; t2 ← random_bst B; mrbst_join t1 t2} =
random_bst (A ∪B)

Pushdown mrbst_join is an inverse operation to split_bst x if x is not present
in the tree. We will also need an inverse operation to split_bst x in the case that
x is present in the tree. Following Roura & Martinez, this operation is called
mrbst_push_down x l r. The situation where it is used can also be thought of
like this: as we have noted before, a random BST over a non-empty set A can
be seen as

do {x← A; l← random_bst {y ∈ A | y < x}; r ← random_bst {y ∈ A | y > x}; return 〈l, x, r〉} .
(1)

Now suppose we do not choose x at random, but rather do the above for a fixed
x:

do {l← random_bst {y ∈ A | y < x}; r ← random_bst {y ∈ A | y > x}; return 〈l, x, r〉}
(2)

The purpose of mrbst_push_down is then to transform the ‘almost random
BST’ distribution described by (2) into the ‘proper random BST’ distribution
described by (1). In a sense, we have a random BST where we have looked at
the root and now want forget this knowledge again.

The definition of mrbst_push_down is similar to mrbst_join except that
we now have a three-way split: In every step, we toss a weighted ‘three-sided
coin’ to determine whether to insert a branch from l, a branch from r, or x itself
(which stops the recursion).

mrbst_push_down l x r =
do {
k ← pmf_of_set {0 . . . |l|+ |r|}
if k < |l| then
case l of 〈ll, y, lr〉 ⇒ do {r′ ← mrbst_push_down lr x r; return 〈ll, y, r′〉}

else if k < |l|+ |r|
case r of 〈rl, y, rr〉 ⇒ do {l′ ← mrbst_push_down l x rl; return 〈l′, y, rr〉}

else
return 〈l, x, r〉

}

Similarly to before, we get the following correctness theorem:

Theorem 6. If l and r are BSTs such that every element of t1 is less than x and
every element of t2 is greater than x, then the result of mrbst_push_down l x r

18

is also a BST and its elements are the unions of those of t1 and t2, plus x. In
Isabelle notation:

theorem
assumes t′ ∈ set_pmf (mrbst_push_down l x r) and bst t1 and bst t2
assumes ∀y∈set_tree t1. y < x and ∀y∈set_tree t2. y > x
shows bst t′ and set_tree t′ = {x} ∪ set_tree t1 ∪ set_tree t2

Moreover, if t1 and t2 are random BSTs, then mrbst_push_down l x r is as
well, i. e.:

theorem
assumes finite A and finite B and ∀y∈A. y < x and ∀y∈ A. y > x

shows do {l← random_bst A; r ← random_bst B; mrbst_push_down l x r} =
random_bst ({x} ∪A ∪B)

6.2 Main Operations

Intersection and Difference With this, we can now define the intersection
and difference of two MR trees very easily:

mrbst_inter_diff b 〈〉 t2 = return 〈〉
mrbst_inter_diff b 〈l1, x, r1〉 t2 =
do {
let (l2, r2) = split_bst x t2
l← mrbst_inter_diff b l1 l2
r ← mrbst_inter_diff b r1 r2
if (x ∈ t2) = b then return 〈l, x, r〉 else mrbst_join l r

}

Choosing b := true yields the intersection of t1 and t2; choosing b := false yields
their difference. Using this unified intersection and difference algorithm, we can
prove the correctness of both in one go and avoid a duplication of proofs.

The correctness theorems for intersection and difference are the following:

Theorem 7. Let b be some Boolean value and let � denote the set intersection
operator ∩ if b = true and the set difference operator \ if b = false. Then the
following holds:

theorem
assumes t′ ∈ set_pmf (mrbst_inter_diff b t1 t2) and bst t1 and bst t2
shows bst t′ and set_tree t′ = set_tree t1 � set_tree t2

Moreover, if t1 and t2 are random BSTs, then mrbst_inter_diff b t1 t2 is as
well, i. e.:2

do {t1 ← random_bst A; t2 ← random_bst B; mrbst_inter_diff b t1 t2} =
random_bst (A �B)

2 We omit the finiteness assumptions on A and B from now on.

19

Union The union of two MR tree is somewhat trickier to define:

mrbst_union 〈〉 t2 = return t2
mrbst_union t1 〈〉 = return t1
mrbst_union t1 t2 =

do {
let 〈l1, x, r1〉 = t1 and 〈l2, x, r2〉 = t2

b← bernoulli_pmf
(

|t1|
|t1|+|t2|

)
if b then do {
let (l′2, r

′
2) = split_bst x t2

l← mrbst_union l1 l′2
r ← mrbst_union r1 r′2
return 〈l, x, r〉

} else do {
let (l′1, r

′
1) = split_bst y t1

l← mrbst_union l′1 l2
l← mrbst_union r′1 r2
if y ∈ t1 then

mrbst_push_down l y r
else

return 〈l, y, r〉
}

}

The correctness theorem looks like this:
Theorem 8.

theorem
assumes t′ ∈ set_pmf (mrbst_union t1 t2) and bst t1 and bst t2
shows bst t′ and set_tree t′ = set_tree t1 ∪ set_tree t2

Moreover, if t1 and t2 are random BSTs, then mrbst_union t1 t2 is as well,
i. e.:

do {t1 ← random_bst A; t2 ← random_bst B; mrbst_union t1 t2} =
random_bst (A ∪B)

Derived Operations We omit the definitions of the insertion and deletion
algorithms here since they are just specialised and ‘inlined’ versions of the union
and difference algorithms with the first (resp. second) tree taken to be a singleton
tree 〈〈〉, x, 〈〉〉. This is also how the correctness of insertion and deletion was
shown in Isabelle: The algorithms were defined recursively just like given by
Roura & Martinez. Then, we show

mrbst_insert x t = mrbst_union 〈〈〉, x, 〈〉〉 t
mrbst_delete x t = mrbst_diff t 〈〈〉, x, 〈〉〉

by a straightforward (and fully automatic) induction, so that the correctness
results for mrbst_union and mrbst_diff carry over directly.

20

6.3 Proofs

The correctness proofs are all straightforward. The key ingredients are (1) and
the fact that choosing uniformly at random from a disjoint union A ∪B can be
replaced by tossing a coin weighted with |A|

|A|+|B| and then choosing uniformly
at random either from A (for heads) or from B (for tails). The rest is mostly a
matter of rearranging in the Giry monad using the basic monad laws in addition
to commutativity

do {x← A; y ← B; C x y} = do {y ← B; x← A; C x y}

and the absorption property

do {x← A; B} = B (where B does not depend on A) .

7 Related Work

The earliest analysis of randomised algorithms in a theorem prover was probably
by Hurd [26] in the HOL system, who modelled them by assuming the existence
of an infinite sequence of random bits which programs can consume. He used
this approach to formalise the Miller–Rabin primality test.

Audebaud and Paulin-Mohring [27] created a shallowly-embedded formalisa-
tion of (discrete) randomised algorithms in Coq and demonstrate its usage on two
examples. Barthe et al. [28] used this framework to implement the CertiCrypt
system to write machine-checked cryptographic proofs for a deeply embedded
imperative language. Petcher and Morrisett [29] developed a similar framework
but based on a monadic embedding. Another similar framework was developed
for Isabelle/HOL by Lochbihler [30].

The expected running time of randomised quicksort (possibly including re-
peated elements) was first analysed in a theorem prover by van der Weegen and
McKinna [31] using Coq. They proved the upper bound 2ndlog2 ne, whereas we
actually proved the closed-form result 2(n + 1)Hn − 4n and its precise asymp-
totics. Although their paper’s title mentions ‘average-case complexity’, they, in
fact, only treat the expected running time of the randomised algorithm in their
paper. They did, however, later add a separate proof of an upper bound for the
average-case of deterministic quicksort to their GitHub repository. Unlike us,
they allow lists to have repeated elements even in the average case, but they
proved the expectation bounds separately and independently, while we assumed
that there are no repeated elements, but showed something stronger, namely
that the distributions are exactly the same, allowing us to reuse the results from
the randomised case.

Kaminski et al. [32] presented a Hoare-style calculus for analysing the ex-
pected running time of imperative programs and used it to analyse a one-
dimensional random walk and the Coupon Collector’s problem. Hölzl [33] form-
alised this approach in Isabelle and found a mistake in their proof of the random
walk in the process.

21

At the same time as our work and independently, Tassarotti and Harper [34]
gave a Coq formalisation of a cookbook-like theorem based on work by Karp [35]
that is able to provide tail bounds for a certain class of randomised recurrences
such as the number of comparisons in quicksort and the height of a random
BST. In contrast to the expectation results we proved, such bounds are very
difficult to obtain on a case-by-case basis, which makes such a cookbook-like
result particularly useful.

Outside the world of theorem provers, other approaches exist for automating
the analysis of such algorithms: Probabilistic model checkers like PRISM [36]
can check safety properties and compute expectation bounds. The ΛΥΩ system
by Flajolet et al. [37] conducts fully automatic analysis of average-case running
time for a restricted variety of (deterministic) programs. Chatterjee et al. [38]
developed a method for deriving bounds of the shape O(lnn), O(n), or O(n lnn)
for certain recurrences that are relevant to average-case analysis automatically
and applied it to a number of interesting examples, including quicksort.

8 Future Work

We have closed a number of important gaps in the formalisation of classic prob-
abilistic algorithms related to binary search trees, including the thorny case of
treaps, which requires measure theory. Up to that point we claim that these
formalisations are readable (the definitions thanks to the Giry monad and the
proofs thanks to Isar [39]), but for treaps this becomes debatable: the issue of
measurability makes proofs and definitions significantly more cumbersome and
less readable. Although existing automation for measurability is already very
helpful, there is still room for improvement. Also, the construction of the meas-
urable space of trees generalises to other data types and could be automated.

All of our work so far has been at the functional level, but it would be
desirable to refine it to the imperative level in a modular way. The development
of the necessary theory and infrastructure is future work.

Acknowledgement. This work was funded by DFG grant NI 491/16-1. We thank
Johannes Hölzl and Andreas Lochbihler for helpful discussions, Johannes Hölzl for his
help with the construction of the tree space, and Bohua Zhan and Maximilian P. L.
Haslbeck for comments on a draft. We also thank the reviewers for their suggestions.

References

1. Nipkow, T.: Amortized complexity verified. In Urban, C., Zhang, X., eds.: In-
teractive Theorem Proving (ITP 2015). Volume 9236 of LNCS., Springer (2015)
310–324

2. Nipkow, T.: Automatic functional correctness proofs for functional search trees.
In Blanchette, J., Merz, S., eds.: Interactive Theorem Proving (ITP 2016). Volume
9807 of LNCS., Springer (2016) 307–322

22

3. Nipkow, T.: Verified root-balanced trees. In Chang, B.Y.E., ed.: Asian Symposium
on Programming Languages and Systems, APLAS 2017. Volume 10695 of LNCS.,
Springer (2017) 255–272

4. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

5. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer (2014)
http://concrete-semantics.org.

6. Eberl, M.: The number of comparisons in QuickSort. Archive of Formal Proofs
(March 2017) http://isa-afp.org/entries/Quick_Sort_Cost.html, Formal
proof development.

7. Eberl, M.: Expected shape of random binary search trees. Archive of Formal Proofs
(April 2017) http://isa-afp.org/entries/Random_BSTs.html, Formal proof de-
velopment.

8. Haslbeck, M., Eberl, M., Nipkow, T.: Treaps. Archive of Formal Proofs (March
2018) http://isa-afp.org/entries/Treaps.html, Formal proof development.

9. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In:
Interactive Theorem Proving - Second International Conference, ITP 2011, Berg
en Dal, The Netherlands, August 22–25, 2011. Proceedings. (2011) 135–151

10. Gouëzel, S.: Ergodic theory. Archive of Formal Proofs (December 2015) http:
//isa-afp.org/entries/Ergodic_Theory.html, Formal proof development.

11. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. In Vitek, J., ed.: Proceedings of the 24th European Symposium on Program-
ming, Springer Berlin Heidelberg (2015) 80–104

12. Hölzl, J.: Markov chains and markov decision processes in Isabelle/HOL. Journal
of Automated Reasoning (2017)

13. Basin, D.A., Lochbihler, A., Sefidgar, S.R.: Crypthol: Game-based proofs in higher-
order logic. Cryptology ePrint Archive, Report 2017/753 (2017) https://eprint.
iacr.org/2017/753.

14. Giry, M.: A categorical approach to probability theory. In: Categorical Aspects
of Topology and Analysis. Volume 915 of Lecture Notes in Mathematics. Springer
Berlin Heidelberg (1982) 68–85

15. Hoare, C.A.R.: Quicksort. The Computer Journal 5(1) (1962) 10
16. Sedgewick, R.: The analysis of Quicksort programs. Acta Inf. 7(4) (December

1977) 327–355
17. Cichoń, J.: Quick Sort – average complexity. http://cs.pwr.edu.pl/cichon/

Math/QSortAvg.pdf
18. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.

2nd edn. McGraw-Hill Higher Education (2001)
19. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-

ing. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA
(1998)

20. Ottmann, T., Widmayer, P.: Algorithmen und Datenstrukturen, 5. Auflage. Spek-
trum Akademischer Verlag (2012)

21. Reed, B.: The height of a random binary search tree. J. ACM 50(3) (May 2003)
306–332

22. Aslam, J.A.: A simple bound on the expected height of a randomly built bin-
ary search tree. Technical Report TR2001-387, Dartmouth College, Hanover, NH
(2001) Abstract and paper lost.

23. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4) (April
1980) 229–239

23

http://concrete-semantics.org
http://isa-afp.org/entries/Quick_Sort_Cost.html
http://isa-afp.org/entries/Random_BSTs.html
http://isa-afp.org/entries/Treaps.html
http://isa-afp.org/entries/Ergodic_Theory.html
http://isa-afp.org/entries/Ergodic_Theory.html
https://eprint.iacr.org/2017/753
https://eprint.iacr.org/2017/753
http://cs.pwr.edu.pl/cichon/Math/QSortAvg.pdf
http://cs.pwr.edu.pl/cichon/Math/QSortAvg.pdf

24. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4) (Oct 1996)
464–497

25. Martínez, C., Roura, S.: Randomized binary search trees. Journal of the ACM 45
(1997)

26. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD thesis, University
of Cambridge (2002)

27. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8) (2009) 568–589

28. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based crypto-
graphic proofs. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009. (2009) 90–101

29. Petcher, A., Morrisett, G.: The foundational cryptography framework. In Focardi,
R., Myers, A.C., eds.: Principles of Security and Trust - 4th International Confer-
ence, POST 2015. Volume 9036 of Lecture Notes in Computer Science., Springer
(2015) 53–72

30. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In Thiemann, P., ed.: Programming Languages and Systems (ESOP 2016).
Volume 9632 of LNCS., Springer (2016) 503–531

31. van der Weegen, E., McKinna, J. In: A Machine-Checked Proof of the Average-Case
Complexity of Quicksort in Coq. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009) 256–271

32. Kaminski, B.L., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected run—times of probabilistic programs. In: Proceedings of
the 25th European Symposium on Programming Languages and Systems - Volume
9632, New York, NY, USA, Springer-Verlag New York, Inc. (2016) 364–389

33. Hölzl, J.: Formalising semantics for expected running time of probabilistic pro-
grams. In Blanchette, J.C., Merz, S., eds.: Interactive Theorem Proving (ITP
2016), Springer (2016) 475–482

34. Tassarotti, J., Harper, R.: Verified tail bounds for randomized programs. In Avigad,
J., Mahboubi, A., eds.: Interactive Theorem Proving, Cham, Springer International
Publishing (2018)

35. Karp, R.M.: Probabilistic recurrence relations. J. ACM 41(6) (November 1994)
1136–1150

36. Kwiatkowska, M.Z., Norman, G., Parker, D.: Quantitative analysis with the prob-
abilistic model checker PRISM. Electr. Notes Theor. Comput. Sci. 153(2) (2006)
5–31

37. Flajolet, P., Salvy, B., Zimmermann, P.: Lambda - upsilon - omega: An assist-
ant algorithms analyzer. In: Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, 6th International Conference, AAECC-6, Rome, Italy, July 4-8,
1988, Proceedings. (1988) 201–212

38. Chatterjee, K., Fu, H., Murhekar, A.: Automated recurrence analysis for almost-
linear expected-runtime bounds. In: Computer Aided Verification - 29th Interna-
tional Conference, CAV 2017. (2017) 118–139

39. Wenzel, M.: Isabelle/Isar — A Versatile Environment for Human-Readable Formal
Proof Documents. PhD thesis, Institut für Informatik, Technische Universität
München (2002) https://mediatum.ub.tum.de/node?id=601724.

24

https://mediatum.ub.tum.de/node?id=601724

	Verified Analysis of Random Binary Tree Structures

