
Lehrstuhl für Logik und Verifikation
Fakultät für Informatik
Technische Universität München

Manuel Eberl

Asymptotic Reasoning
in a Proof Assistant

Lehrstuhl für Logik und Verifikation
Fakultät für Informatik
Technische Universität München

Asymptotic Reasoning in a Proof Assistant

Manuel Eberl

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Helmut Seidl

Prüfende der Dissertation:
1. Prof. Tobias Nipkow, Ph.D.
2. Prof. Dr. Sander R. Dahmen,
Vrije Universiteit Amsterdam

Die Dissertation wurde am 21.09.2020 bei der Technischen Universität München eingereicht und
durch die Fakultät für Informatik am 01.12.2020 angenommen.

Abstract

This dissertation describes my work in the formalisation of mathematics with the proof
assistant Isabelle/HOL, particularly mathematics related to asymptotic concepts such as limits
and function growth. This work consists of both the formalisation of fundamental mathemat-
ical material for the Isabelle/HOL standard library and the creation of new proof automation
tools. Both of these have since been used successfully in many formalisation applications
both in pure mathematics (such as analysis and number theory) and computer science (i.e.
algorithm analysis).

Specically, this thesis presents four major contributions, each corresponding to one peer-
reviewed publication under the umbrella of ‘asymptotic reasoning in Isabelle/HOL’:

The rst of these introduces a proof automation tool that employs techniques from computer
algebra to compute and prove limits and other asymptotic properties for a large class of
real-valued functions (much like systems such as Maple or Mathematica). This tool has been
instrumental in all my subsequent formalisation work, and no comparable instrumentation
exists in other proof assistants.
Second, a formal proof of a ‘cookbook method’ theorem due to Akra and Bazzi, which is

a sweeping generalisation of the well-known Master Theorem of divide-and-conquer recur-
rences. In computer science, this theorem is a staple of the analysis of divide-and-conquer
algorithms. The formalisation also provides tooling to facilitate the application of the theorem
to specic algorithms.

Third, a formalisation of the theory of linear recurrences and rational generating functions
– in particular how to obtain closed-form solutions and asymptotic estimates of linear recur-
rences. These have applications in combinatorics and in the analysis of algorithms and data
structures. In addition to the theorems, a veried executable solver for linear recurrences and
a certier for their asymptotics are also provided.

Finally, in order to demonstrate the usability of the aforementioned library and machinery,
the last publication then describes its application to the formalisation of the vast majority of
Apostol’s classic textbook on analytic number theory, including the Prime Number Theorem,
Dirichlet’s Theorem, and many more results on the distribution of prime numbers and the
asymptotic behaviour of number-theoretic functions.

iii

Zusammenfassung

Diese Dissertation beschreibt meine Arbeit in der Formalisierung von Mathematik mit dem
Beweisassistenten Isabelle/HOL, insbesondere von Mathematik im Zusammenhang mit asym-
ptotischen Konzepten wie Grenzwerten und Funktionswachstum. Diese Arbeit beinhaltet
sowohl die Formalisierung grundlegenden mathematischen Materials für die Isabelle/HOL-
Standardbibliothek als auch die Etablierung neuer Werkzeuge zur Beweisautomatisierung.
Beides wurde seitdem erfolgreich in vielen Anwendungen eingesetzt, sowohl Formalisierun-
gen in der reinen Mathematik (wie Analysis und Zahlentheorie) als auch in der Informatik (z.
B. Algorithmenanalyse).
Konkret besteht diese Arbeit aus vier Teilen im Bereich „asymptotische Beweisführung in

Isabelle/HOL“ mit jeweils einer zugehörigen Veröentlichung:
Der erste Teil ist ein Werkzeug zur Beweisautomatisierung, das Techniken aus der Com-

puteralgebra verwendet, um Grenzwerte und andere asymptotische Eigenschaften für eine
große Klasse von reellen Funktionen zu berechen und zu beweisen (ähnlich wie Systeme wie
Maple oder Mathematica).
Der zweite Teil beschreibt den formalen Beweis eines kochrezeptartigen Theorems von

Akra und Bazzi, das eine Verallgemeinerung des bekannten Master-Theorems für „divide-
and-conquer“-Rekurrenzen darstellt. Dieses Theorem ist ein grundlegender Bestandteil der
Analyse von „divide-and-conquer“-Algorithmen in der Informatik. Die Formalisierung bein-
haltet außerdem Werkzeuge, die die Anwendung des Theorems auf konkrete Algorithmen
angenehmer gestalten.
Der dritte Teil ist die Formalisierung der Theorie der linearen Rekurrenzen und rationa-

len Erzeugendenfunktionen – insbesondere wie geschlossene Lösungen und asymptotische
Abschätzungen für sie gewonnen werden können. Diese nden Anwendungen in der Kom-
binatorik und der Analyse von Algorithmen und Datenstrukturen. Zusätzlich werden ein
verizierter ausführbarer Löser sowie eine Zertizierer für asymptotische Abschätzungen
entwickelt.
Als letzter Punkt wird, um die Nutzbarkeit der zuvor dargelegten Bibliothek und Maschi-

nerie zu zeigen, die Formalisierung des Großteils von Apostols Lehrbuch über analytische
Zahlentheorie geschildert. Dies beinhaltet formale Beweise für den Primzahlsatz, den Satz von
Dirichlet, und viele andere Resultate über die Verteilung der Primzahlen und das asymptoti-
sche Verhalten zahlentheoretischer Funktionen.

iv

Acknowledgements

This section was by far the easiest one for me to write, since there is simply so much to
write about. The dicult part was really where to stop.

First of all, I would like to thank everyone who commented on or helped with any of the
publications upon which this thesis is based: Jeremy Avigad, Louay Bazzi, Max Haslbeck (the
elder), Johannes Hölzl, Kristina Magnussen, Tobias Nipkow, Andrei Popescu, and the numer-
ous anonymous reviewers. I also want to additionally thank the people who commented on
the thesis text itself: Mathias Fleury, Jasmin Blanchette, Max Haslbeck (the elder), Lars Hupel,
Mohammad Abdulaziz, Jeremy Avigad, Uma Zalakain, Simon Wimmer, Kevin Buzzard, Julian
Brunner, and Kristina Magnussen.

Next, I have to talk about the group I worked at in Munich. I had the great fortune to work in
Tobias Nipkow’s group as a PhD student for six years, and to be vaguely unocially associated
with it for a few years before that. I will thank a great number of people I met during that
time. I tried to keep it short, failed, and decided it did not matter.

First, Peter ‘The Machine’ Lammich, who was the advisor of my rst Bachelor’s thesis and
‘Praktikum’. He was probably the most athletic member of our group (which is no small feat,
given the competition), and he is basically a one-man research group all by himself. His move
to Brexitland was a great loss for us all.

Johannes Hölzl, the advisor of my Master’s thesis, and Fabian Immler, my next-door oce
neighbour. They were the two mathematicians of the chair’s old guard, and their departure
left me as their rather inadequate replacement as resident expert for probability theory and
analysis.

Julian Brunner, who introduced me to the world of competitive Super Smash Bros. Melee for
the Nintendo GamecubeTM and who served as my partner-in-crime for our highly successful
electronics project (the rst USB Sledgehammer) and our not-so-successful lm project.
Ondřej Kunčar, who loved nothing more than to give me (and everyone else) an excuse

not to work by starting lengthy discussions. I miss arguing about minutiæ of word usage in
German with eight other native speakers during lunch due to one of his questions.

Mohammad Abdulaziz, always in the mood for a lengthy Socratic dialogue where he would
continually ask me things about a topic I thought I knew something about until I felt like I
absolutely did not. He was always easily convinced to join into whatever activity I proposed,
be it bouldering, Super Smash Bros., or climbing Arthur’s Seat.

Lars Noschinski, who was in the last year of his PhD when I was in my rst. His suering
served as a chilling omen of what it would be like to write up a thesis.

v

Jonas Rädle, Kevin Kappelmann, and Lukas Stevens, the Nesthäkchen who managed to put
together a very respectable Haskell lecture between the three of them and graciously allowed
me to serve as Master of Competition (Sr).

Jasmin Blanchette, an amazing polyglot (certainly much more so than I!) and never-ending
fountain of productivity (likewise). He was also the originalMaster of Competition and, having
inherited the position from him, I can only hope I did my job half as well as he did.

Dmitriy Traytel – a pub quiz enthusiast (like me) and a PhD speedrunner (unlike me). His
work on corecursion solved some of my problems years before I knew I had them. I will not
pretend I understand any of it, but fortunately it was easy enough to use.

Max Haslbeck (the elder), my climbing instructor, who continuously pushes me to try harder
problems. Even outside the gym, he is always full of suggestions and enthusiasm.
Simon Wimmer, aspiring ecoterrorist and fellow Gymnasium Dingolng alumnus. Of all

the members of our bouldering group, he was the one closest to me in skill, so it was always
great fun to send with him.

Helma Piller (and before her Eleni Nikolaou-Weiss), who somehow keeps this unruly lot of
us suciently organised. Without her, we would probably all have long since been bankrupted
by unreimbursed travel expenses.
Finally, m’colleague, Lars Hupel. Fellow connoisseur of good dogs and bad puns. I very

much miss his absurd enthusiasm for trains, electoral systems, and bureaucracy, and his mor-
bid interest in looking at a piece of software and nding the most bizarre and disgusting thing
he can get it to do. I also really miss him getting the water for our Earl Grey. I mean, that tea
kitchen is denitely too far away.

To prevent this section from exploding even more, I will only briey mention a number
of other people who helped or inuenced me in some way, and/or from whose prior work I
have proted greatly: Florian Brandl, Felix Brandt, Amine Chaieb, Jacques Fleuriot, Christian
Geist, Florian Haftmann, John Harrison, Joris van der Hoeven, Brian Human, Gregor Kemper,
Angeliki Koutsoukou-Argyraki, Alexander Krauss, Wenda Li, Larry Paulson, Andrei Popescu,
Bruno Salvy, René Thiemann, Thomas Türk, Akihisa Yamada, Bohua Zhan. I would also espe-
cially like to thank Larry Paulson for hosting me in Cambridge for ve very productive weeks,
and the CeDoSIA graduate school for paying for it.

Of course, I also want to profusely thank my advisor Tobias Nipkow. He introduced me to
the world of Interactive Theorem Proving back in 2011 and supported me all the way until
now in 2020, always giving me great freedom to pursue my own interests, perhaps with the
occasional little nudge in the right direction. He has cultivated an exceptional group of people
in Munich and I could not have found a better place to work in.

Lastly, I would also like to thank my girlfriend of many years, Kristina Magnussen, and my
parents and my grandmother for their support during all those years.

vi

Contents

1 Introduction 1

2 Outline 7

3 Preliminaries 9
3.1 The Isabelle Proof Assistant . 9
3.2 Interactive Theorem Proving in a Nutshell . 10
3.3 The Isabelle Distribution and the Archive of Formal Proofs 14
3.4 Notation and Terminology . 15
3.5 Landau Symbols . 17

4 Summary of Contributions 21

5 Semi-Automatic Real Asymptotics 23
5.1 Multiseries . 25
5.2 Implementation . 28
5.3 Asymptotic Interval Arithmetic . 29
5.4 Related Literature . 30
5.5 Future Work and Outlook . 30

6 Divide-and-Conquer Recurrences 33
6.1 The Formalised Theorem . 33
6.2 Automation . 35
6.3 Related Literature . 36

7 Linear Recurrences 39
7.1 Denitions and Scope . 40
7.2 Implementation . 41
7.3 Certifying Asymptotic Upper Bounds . 41
7.4 Related Literature and Applications . 42

8 Analytic Number Theory 43
8.1 Formalised Results . 43
8.2 Related Literature . 44
8.3 Further Work . 45

9 Concluding Remarks 47

Bibliography 51

vii

Contents

Appendix 59

A Semi-Automatic Real Asymptotics 61

B Divide-and-Conquer Recurrences 71

C Analytic Number Theory 99

D Linear Recurrences 119

viii

1 Introduction

“ [The Analytical Engine] might act upon other things besides number, were objects
found whose mutual fundamental relations could be expressed by those of the
abstract science of operations, and which should be also susceptible of adaptations
to the action of the operating notation and mechanism of the engine.
— Ada Lovelace, Sketch of the Analytical Engine (1842) ”
“ Wir sehen seit langem, daß diese Maschinen sich zu mehr eignen als zur planvol-

len Verarbeitung von Zahlen, vielmehr zu jeder in Regeln faßbaren Behandlung
von Informationen irgendwelcher Art.

We have long been able to see that these machines lend themselves to more than the
systematic processing of numbers, but rather to handling information of any kind
in any way that can be expressed in rules.

— Eike Jessen, Die elektronische Rechenmaschine und unsere Gesellschaft (1969) ”
At the beginning of the 20th century, there was a erce debate among mathematicians: can
mathematics be made fully formal, i.e. expressed using only symbols and a few reasoning
rules? Or are there some parts of it that transcend formalism? Some, such as Hilbert, strongly
believed that formalisingmathematics was not only possible, but necessary. All of mathematics
should be put on formally rigorous and provably consistent foundations. It was even imagined
that one day one might be able to construct a machine that could eventually decide the validity
of any mathematical statement at the push of a button.

Unfortunately, these hopes were squashed by Gödel’s groundbreaking incompleteness the-
orems in 1931, which, arguably, imply that there can be no such unied formal framework
for mathematics. Informally, the statements of these two theorems are that any suciently
powerful and consistent mathematical framework will have two aws:

• There are true statements for which no proof exists.
• The consistency of the framework cannot be proven within itself.

Some years later, Turing showed a related result: the undecidability of the halting problem, i.e.
that there cannot be a computer program which, given another computer program 𝑃 as input,
decides whether 𝑃 terminates or not. This also implies that the ‘magic button machine’ cannot
exist: if it did, we could simply encode ‘𝑃 terminates’ as a mathematical statement, push the
button, and return that result.1
1Turing’s result in fact implies a variant of Gödel’s rst theorem: if all true statements could be proven, then for
each program 𝑃 there would be a proof for ‘𝑃 terminates’ or ‘𝑃 does not terminate’, and we could solve the
halting problem by searching the space of all proofs until we nd a proof for either of the two statements.

1

1 Introduction

However, this was not the end of formal mathematics: one could still hope to nd a formal
framework that works well in practice, i.e. we just hope that whatever statement we currently
care about will turn out to be provable. In 1901, Russell’s paradox (‘the set of all sets that
do not contain themselves’) seemed to cast doubt on this, since it showed that the naïve set
theory that was used at the time was fundamentally awed as a logical system. Some believed
that this only showed that formal mathematics was a fool’s errand to begin with, but various
logicians worked on solutions to this in the following years that have since turned out to be
quite robust. Russell himself developed a new system based on the notion of types with the
intention of preventing the kind of self-referentiality that led to the paradox he had discovered.

Based on this, Whitehead and Russell set it upon themselves to create the rst fully formal
and rigorous collection of mathematics: the Principia Mathematica. It is an enormous three-
volume work, over ten years in the making and with over two thousand pages combined. In it,
they attempted to develop mathematics absolutely formally from the ground up with a level of
rigour that had never been seen before, at a time when symbolic logic was still in its infancy.
They began with set theory, basic arithmetic, and real numbers, but having reached the end of
the third volume in 1913, they admitted to being ‘intellectually exhausted’ and gave up on their
plans on a fourth volume on geometry. The Principia’s lengthy proof leading up to the fact
that 1 + 1 = 2 is frequently used to poke fun at formal mathematics, and the book is certainly
almost impossible to read. Fittingly, the historian Peter Watson called it ‘one of Russell’s most
original publications’ but also ‘one of the least read of modern times.’ Nevertheless, they had
achieved one important goal: by the time they had written it, it was widely accepted that there
were probably no fundamental obstacles to formalising all of known mathematics.

Although it had now been shown that formalising mathematics was possible in principle,
it seemed completely infeasible to do so for any signicant amount of non-trivial material.
However, only a few years later, a real game changer appeared on the scene: the electronic
computer. With it came the possibility of outsourcing the tedious and error-prone task of
writing and checking formal proofs to a machine. And indeed, in 1956, Newell et al. wrote
the computer program Logic Theorist, the rst automated theorem prover. It was able to nd
proofs for 38 of the rst 52 theorems from the Principia, and in one instance the proof it found
was more elegant and satisfying than the one in the Principia. In a letter to Simon (one of the
authors of Logic Theorist), Russell commented:

‘I am delighted to know that Principia Mathematica can now be done by machinery
[. . .] I am quite willing to believe that everything in deductive logic can be done
by machinery.’

McCorduck expressed this in more philosophically coloured words in her book ‘Machines
Who Think’ [77], stating that the success of Logic Theorist was ‘proof positive [that] a ma-
chine could perform tasks heretofore considered intelligent, creative, and uniquely human’.

While these automated theorem provers (ATP) are without doubt a thriving and important
area of research, they are not the topic of my work, and they do have their limitations: we are
still very far away from giving a dicult (or even open) problem in mathematics to a computer
and having any hope of it nding a proof in our lifetime. There has been one notable case

2

where an open mathematical problem (namely the Robbins conjecture in Boolean algebra)
was solved by an automated theorem prover called EQP in 1996 [78]. At the time of writing
this dissertation almost 25 years later, ATPs are sometimes used to resolve open research
problems in mathematics (see e.g. the work by Heule et al. [61]), but this usually requires
a large amount of work outside the system in order to reduce it to something that the ATP
understands. It seems that for now, the direct formalisation of mathematics at large – algebra,
analysis, topology, etc. – is beyond the scope of ATPs.

The Automath [80] system by de Bruijn (started in 1967) took a dierent approach: the user
still had to write the formal proof, but a proof checker would then verify the correctness of
that proof fully automatically. In his PhD thesis in 1976, van Benthem Jutting [96] translated
Landau’s Grundlagen der Analysis [71] to Automath. The Automath approach naturally leads
to the concept of Interactive Theorem Proving (ITP), or Proof Assistants: the computer does not
only check the correctness of the formal proof after it has been written by a human but also
while it is still being written, and it assists the human in constructing it.

This led to a large and growing family of proof assistants in the following two decades –
to name just a few notable examples: NQTHM [14] (1971), Mizar [79] (1973), LCF [47] (1973),
Isabelle [81] (1986), HOL [46] (1988), Coq [24] (1989). All of these (or in some cases their
numerous descendants) are still in use at the time of writing this thesis (2020). For some of
these systems (especially in the HOL and NQTHM family) this development was particularly
spurred on by industrial applications in the verication of software and hardware, but it
seems that most or even all of them have been used at least partially for the formalisation of
mathematics as well.

Indeed, as the capabilities of the systems and the sizes of their communities grew, the formal-
isation of mathematics has made great strides since the early 2000s. To illustrate this, consider
the following list of groundbreaking and successful formalisation projects in mathematics:

• Prime Number Theorem, elementary Selberg–Erdős proof (Isabelle/HOL, 2004) [7]
• Four Colour Theorem (Coq, 2005) [44]
• Jordan Curve Theorem (HOL Light, 2007) [54]
• Prime Number Theorem, complex-analytic proof (HOL Light, 2009) [58]
• Feit–Thompson Theorem (Coq, 2012) [45]
• Kepler’s Conjecture (HOL Light and Isabelle/HOL, 2015) [55]
• Chaoticity of the Lorenz Attractor (Isabelle/HOL, 2018) [65]
• Independence of the Continuum Hypothesis (Lean, 2019) [56]

This urry of activity was aided by improvements to the systems themselves, such as growing
libraries of basic mathematical denitions, facts, and theories (e.g. algebraic structures, dier-
ential equations, complex analysis) and better tools to make writing denitions and proofs
easier for the user (e.g. type classes, proof automation, recursive function denitions, algeb-
raic (co-)datatypes, structured proof languages). Work on both of these aspects will be an
important part of this thesis.
The formalisation of the Kepler conjecture is particularly noteworthy for a number of

reasons: rst of all, the sheer number of collaborators (the arXiv paper on the formalisation

3

1 Introduction

lists 22 authors); second, the conjecture had only been resolved a few years before formalisation
began. The proof by Hales relied heavily on computations done by computer programs written
specically for the proof and the referees found themselves overwhelmed by the task of
checking the correctness of these programs. This led Hales – a mathematician with no prior
association with the theorem-proving community – to spearhead the formalisation eort
himself. This illustrates a rst and very important reason why formalisation of mathematics
might be interesting both to mathematicians and to society in general: it allows us to convince
ourselves beyond reasonable doubt that a mathematical proof is correct when the traditional
refereeing process fails, such as for computer proofs.
The other projects mentioned above were also very daunting at the time. For instance,

shortly before Harrison formalised the analytic proof of the Prime Number Theorem in HOL
Light, Bob Solovay had predicted2 that proof assistants would not be ready to formalise this
proof for decades. This brings us to another reason to formalise mathematics: to demonstrate
that it can be done.

The last reason is an even more frivolous one but a very important one to me nonetheless:
Because it is fun. There is a profound satisfaction innate to formalisation with a proof assistant
that can only be compared to mastering an exceptionally dicult computer game (a compar-
ison e.g. made half-jokingly by Tobias Nipkow when introducing the Isabelle proof assistant
in his Semantics lecture). The formaliser (or player) tackles one proof obligation after another,
frantically working back and forth to make a connection between the assumptions and the
goal, backtracking and trying another route when entering a dead end, and rejoicing upon
nally reaching ‘No subgoals!’. While this may sound just like ‘pen-and-paper’ mathematics,
the dierence is that the computer, ever vigilant and pedantic, gives immediate feedback at
every single step and does not allow even the slightest vagueness in an argument. There is
hardly ever any uncertainty about whether what one has written down is correct or not. Thus,
the feedback loop of punishment and reward is very fast – just like in a computer game.

I discovered this computer game in my rst year as an undergraduate in 2011 in the afore-
mentioned lecture by Tobias Nipkow. The ability to formalise arbitrary statements from com-
puter science and mathematics at this level of clarity immediately impressed and fascinated
me greatly.3 It is no exaggeration to say that this experience completely derailed the course of
my university studies – but unlike other highly addictive computer games, it was probably not
to the detriment of my academic career. From that point onward, it was interactive theorem
proving all the way for me, and that has now led me to this PhD project.

2See the paragraph on the Prime Number Theorem in FreekWiedijk’s ‘The Seventeen Provers of theWorld’ [101].
3Indeed, in my experience, many mathematicians still seem to be under the impression that this is not possible. A
particularly common misconception is that because they have nite memory, computers can only ever check
nitely many cases by exhaustion but not possibly reason about innity and non-discrete objects like real
numbers or transcendental functions. An odd thing to think, in my opinion, considering they seem to be able
to do it just ne with a nite brain and a nite piece of paper in front of them. Perhaps this is a remnant of the
aforementioned idea that mathematical reasoning is something ‘intelligent, creative, and uniquely human.’

4

In this publication-based thesis, I will showcase four particular steps from one important
part of my interactive theorem proving journey. These correspond to four peer-reviewed
articles of mine that can be found in the appendix, bound together by the common theme of
asymptotics: the study of limits and the growth of (mostly real-valued) functions, a topic that
had previously not been given enough attention in our community.

5

2 Outline

As stated before, the thesis is centred around four peer-reviewed publications, which can
be found in the appendix. Most of the remainder of the thesis serves to provide summaries,
background information, and context for these.
Chapter 3 gives some general background required to understand the work that is being

presented: Section 3.1 presents a brief overview of the Isabelle theorem prover, followed by a
more detailed explanation of how interactive theorem proving is done in Isabelle in practice in
Section 3.2. Section 3.3 explains the visible universe of Isabelle applications, where formalised
material in Isabelle is published, and how it is maintained. Lastly, Section 3.4 explains some
notational conventions and terminology relevant to the rest of this work and Section 3.5
focuses in particular on the asymptotic notation known as Landau symbols.
Next, Chapter 4 gives a brief synopsis of the four publications as well as a short list of

additional related contributions without a formal publication attached to them. Chapters 5 to 8
then each give more detailed summaries, motivation, background information, and in some
cases outlook regarding one of the publications.
Finally, Chapter 9 concludes with some additional noteworthy formalisation work that I

have done during my time as a PhD student and some remarks on what I consider important
for the future of the formalisation of mathematics.

7

3 Preliminaries

“ Formal verication is like opening cans of worms,
and then eating them.

— Robert Sison, via Twitter (2020) ”
3.1 The Isabelle Proof Assistant

For the work presented in this thesis (and all of my work in general), I used the proof assistant
Isabelle, which was originally developed by Larry Paulson in 1986 and extended by various
other people after that, including me. What sets Isabelle apart frommost other proof assistants
is the fact that it is generic: it provides a very minimalistic logic called Isabelle/Pure, which
only provides very basic logical concepts such as implication and universal quantication. On
top of this, various other object logics can be (and have been) built. At the time of writing this
dissertation, the most used logic in Isabelle by a very large margin is higher-order logic (HOL),
and this is the logic that I used as well. Isabelle’s version of HOL is very similar to those of the
other systems from the HOL family of proof assistants (e.g. HOL4, HOL Light, HOL Zero, Proof
Power), and there is ongoing work on importing HOL4 proofs into Isabelle/HOL [66]. For the
sake of completeness, I will mention two other object logics available in Isabelle. First, there
is Zermelo–Fraenkel set theory, which is considered the usual ‘default’ logic for traditional
mathematics (but is not very well-developed in Isabelle). Second, there is recent and very
ambitious work to create support for Homotopy Type Theory as well [22].

Any theorem proving system that is usable for practical developments will likely consist of
a fairly large code base. Consequently, steps must be taken to still ensure the soundness of the
overall system, i.e. that any theorem that can be produced by the system really is a valid fact
in the underlying logic. There are various approaches for this, but I will only mention the one
used by Isabelle: like the systems of the HOL family, the design of Isabelle roughly follows
what is known as the LCF model (named after the early experimental theorem prover of the
same name). The full formal proofs (also called proof terms or proof objects) are not recorded
at all. Soundness is instead ensured through a mechanism of the programming language in
which the system is implemented (Standard ML). A type thm of theorems is dened in such a
way that only a relatively small set of functions can inspect and manipulate values of this type.
These functions form the inference kernel, and all other code can only create or modify such
thm values by using this kernel. Therefore, in principle, only the correctness of the kernel
is critical for the soundness of the resulting system. The kernel is relatively small and only
provides very basic operations such as modus ponens, eliminating a universal quantier, or
making a non-recursive equational denition.

9

https://twitter.com/robs_cse/status/1287886838812663808

3 Preliminaries

The Standard ML implementation and runtime that Isabelle is based upon is Poly/ML [76],
which allows on-the-y compilation of code. Isabelle makes use of this by providing an ML
command with which users can add arbitrary program code to the system at any point (many
other systems have similar features). This allows advanced users to create their own Isabelle
commands, including proof automation, denitional tools, diagnostic and visualisation tools,
or interfaces to external tools (such as automated theorem provers or computer algebra sys-
tems). Regarding user-dened proof automation tools, it should again be mentioned that due
to the LCF approach, bugs in user code cannot lead to logical inconsistencies by design. Inter-
estingly, most of Isabelle’s basic commands are not ‘built-in’ but also constructed in this way
with only a fairly minimal amount of bootstrapping. In this sense, there is no clear distinction
between an Isabelle user and an Isabelle developer.

Lastly, I must mention one very important feature of Isabelle, even if it is only tangentially
relevant for the work presented here: the code generator [52, 53]. Isabelle’s code generator can
automatically generate executable code from Isabelle/HOL denitions, provided that these
denitions fall within a suitable ‘computational’ subset of HOL (e.g. no unbounded quantic-
ation or choice operators). For denitions that are not directly computational in this sense or
that are too inecient, code equations can be provided. These are ‘alternative denitions’ to
be used by the code generator, but their equivalence to the original denitions must be proven
by the user. In this dissertation, the only place where I make direct use of the code generator
is in order to provide an executable solver and certier for linear recurrences (see Section 7).
However, the code generator is also of great indirect use: it is used by QuickCheck [17], an
automatic random counterexample generator. Every time a user attempts to prove a theorem,
QuickCheck tries to use the code generator to nd counterexamples for the theorem statement
to let the user knowwhen they are trying to prove something that does not hold. This happens
fairly frequently in interactive theorem proving due to typos, forgotten preconditions, etc.

3.2 Interactive Theorem Proving in a Nutshell

In this section, I will explain what using Isabelle looks like in practice. Some of this is applicable
to other systems as well, but some aspects (such as structured proofs) are fairly specic to
Isabelle. A good (although now already somewhat dated) overview of various systems and
what proofs typically look like in each of them can be found in Wiedijk’s book The Seventeen
Provers of the World [101].
Denitions in a theorem prover often look much like code in a programming language

– especially functional ones such as Haskell or OCaml, since many logics (including HOL)
contain all the essential features of a functional programming language.
Like functional programming languages, many systems draw heavily from Church’s λ

calculus, including the notation 𝑓 𝑥 𝑦 for function application instead of the 𝑓 (𝑥,𝑦) used in
traditional mathematics, and λ𝑥 . 𝑡 for an anonymous function 𝑥 ↦→ 𝑡 .
Typically, the user writes some denitions, theorem statements, and proofs, and then the

computer checks thewell-formedness and correctness of the input. In contrast to programming
languages, however, the processes of writing the code and interpreting it are intertwined: the
user does not write everything at once, runs the checker, repairs small mistakes, re-runs the

10

3.2 Interactive Theorem Proving in a Nutshell

checker, etc. but rather writes denitions and proof steps one by one, receiving immediate
feedback from the system. The system provides dynamic information about the current context
(e.g. what variables are in scope and what their types are, which proof obligations remain to
be shown) and it would be dicult if not impossible to write a proof in the system without
that information. This requires very tight integration with the editor, and the only Isabelle
editor currently suitable for production use is Isabelle/jEdit [98].
Many proof assistants are traditionally centred around tactics, which are small commands

that transform a proof goal into one or more new goals (or solve it completely). For instance,
to prove a goal such as ∀𝑥 . 𝑃 𝑥 ∧𝑄 𝑥 , one could apply a tactic that performs ∀-introduction,
which adds a new xed free variable 𝑥 to the scope and the new goal 𝑃 𝑥∧𝑄 𝑥 . Next, one could
use ∧-introduction, which leaves us with the two goals 𝑃 𝑥 and𝑄 𝑥 . This is done until all goals
have been solved – for non-trivial theorems, such proofs usually consist of long sequences of
tactic invocations.
Isabelle/HOL provides many such tactics, including

• very low-level tactics like rule to apply resolution with a single theorem (as was done
above) or subst to perform a single step of equational rewriting,

• general-purpose automation such as the simplier or auto, which rely on a large ex-
tensible database of rewriting rules, tableaux reasoning, and other tricks, and

• special-purpose automation for e.g. Presburger arithmetic, SAT solving, or approxima-
tion of transcendental functions.

Historically, Isabelle proofs used to consist entirely of such long tactic scripts – possibly
hundreds of them for larger theorems. However, such proofs are very unreadable and dicult
to maintain, which is problematic considering the vast amount of material in the Isabelle
universe and the fact that the underlying system and basic library has undergone and is still
undergoing great changes on a regular basis.
Therefore, most modern Isabelle proofs are written in the Isar proof language introduced

by Wenzel [99, 100] (which was heavily inspired by Mizar). This allows structured proofs that
are much closer to the kind of reasoning mathematicians actually do on paper instead of the
awkward ‘backward’ reasoning of tactic scripts.

To illustrate what these proofs look like in practice, let us look at a concrete example. Con-
sider the statement gcd(𝑐𝑎, 𝑐𝑏) = 𝑐 · gcd(𝑎, 𝑏). Figures 3.1 and 3.2 show a structured Isar proof
and an ‘old-style’ tactic script proof of this statement, respectively. Figures 3.3 to 3.6 show
proofs in some other popular systems, taken from their respective standard libraries.1

1Note that the Isabelle/HOL and Lean versions are for general rings and include a ‘normalize’ operation that is
required due to the fact that the GCD is dened to be a canonical representative (e.g. gcd(4, 6) is 2 and not −2).
For the other systems, the proof for the GCD on natural numbers is shown, where no normalisation is needed.

11

3 Preliminaries

lemma (in semiring_gcd) gcd_mult_le: ‹gcd (c ∗ a) (c ∗ b) = normalize (c ∗ gcd a b)›
proof (cases ‹c = 0›)
case True
then show ?thesis by simp

next
case False
from ‹c ≠ 0› have ‹c ∗ gcd a b dvd gcd (c ∗ a) (c ∗ b)›
by (auto intro: gcd_greatest)

moreover from ‹c ≠ 0› have ‹gcd (c ∗ a) (c ∗ b) div c dvd gcd a b›
by (intro gcd_greatest) (auto simp: div_dvd_i_mult algebra_simps)

from this and ‹c ≠ 0› have ‹gcd (c ∗ a) (c ∗ b) dvd gcd a b ∗ c›
by (subst (asm) div_dvd_i_mult) auto

ultimately have ‹normalize (gcd (c ∗ a) (c ∗ b)) = normalize (c ∗ gcd a b)›
by (auto intro: associated_eqI simp: algebra_simps)

then show ?thesis
by (simp add: normalize_mult)

qed

Figure 3.1: Structured Isabelle/HOL proof (adapted from the distribution)

lemma (in semiring_gcd) gcd_mult_le: ‹gcd (c ∗ a) (c ∗ b) = normalize (c ∗ gcd a b)›
apply (cases ‹c = 0›)
apply simp
apply (rule associated_eqI)

apply simp
apply (subst mult.commute, subst div_dvd_i_mult [symmetric]; simp)
apply (simp add: div_dvd_i_mult mult_ac)

apply simp_all
done

Figure 3.2: Isabelle/HOL tactic script proof (adapted from the distribution)

let GCD_LMUL = prove(
‘!a b c. gcd(c ∗ a, c ∗ b) = c ∗ gcd(a,b)‘,
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN
ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN
REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC DIVIDES_MUL_L) THEN
REWRITE_TAC[GCD] THEN REPEAT STRIP_TAC THEN
REPEAT_TCL STRIP_THM_THEN (SUBST1_TAC o SYM)
(SPECL [‘a:num‘; ‘b:num‘] BEZOUT_GCD) THEN
REWRITE_TAC[LEFT_SUB_DISTRIB; MULT_ASSOC] THEN
MATCH_MP_TAC DIVIDES_SUB THEN CONJ_TAC THEN
MATCH_MP_TAC DIVIDES_RMUL THEN ASM_REWRITE_TAC[]);;

Figure 3.3: HOL Light proof (standard library, Library/prime.ml)

12

3.2 Interactive Theorem Proving in a Nutshell

Lemma gcd_mul_mono_l :
forall n m p, gcd (p ∗ n) (p ∗ m) == p ∗ gcd n m.

Proof.
intros n m p.
apply gcd_unique’.
apply mul_divide_mono_l, gcd_divide_l.
apply mul_divide_mono_l, gcd_divide_r.
intros q H H’.
destruct (eq_0_gt_0_cases n) as [EQ|LT].
rewrite EQ in ∗. now rewrite gcd_0_l.
destruct (gcd_bezout_pos n m) as (a & b & EQ); trivial.
apply divide_add_cancel_r with (p∗m∗b).
now apply divide_mul_l.
rewrite <− mul_assoc, <− mul_add_distr_l, add_comm, (mul_comm m), <− EQ.
rewrite (mul_comm a), mul_assoc.
now apply divide_mul_l.
Qed.

Figure 3.4: Coq proof, tactic style (standard library, Numbers/Natural/Abstract/NGcd.v)

Lemma muln_gcdr : right_distributive muln gcdn.
Proof.
move=> p m n; have [−> //|p_gt0] := posnP p.
elim/ltn_ind: m n => m IHm n; rewrite gcdnE [RHS]gcdnE muln_eq0 (gtn_eqF p_gt0).
by case: posnP => // m_gt0; rewrite −muln_modr //=; apply/IHm/ltn_pmod.
Qed.

Figure 3.5: Coq proof, SSReect style (Mathematical Components, div.v)

theorem gcd_mul_le (a b c : 𝛼) : gcd (a ∗ b) (a ∗ c) = normalize a ∗ gcd b c :=
classical.by_cases (by rintro rfl; simp only [zero_mul, gcd_zero_le, normalize_zero]) $

assume ha : a ≠ 0,
suices gcd (a ∗ b) (a ∗ c) = normalize (a ∗ gcd b c),
by simpa only [normalize_mul, normalize_gcd],

let 〈d, eq〉 := dvd_gcd (dvd_mul_right a b) (dvd_mul_right a c) in
gcd_eq_normalize
(eq.symm I mul_dvd_mul_le a $ show d p gcd b c, from
dvd_gcd
((mul_dvd_mul_i_le ha).1 $ eq I gcd_dvd_le _ _)
((mul_dvd_mul_i_le ha).1 $ eq I gcd_dvd_right _ _))

(dvd_gcd
(mul_dvd_mul_le a $ gcd_dvd_le _ _)
(mul_dvd_mul_le a $ gcd_dvd_right _ _))

Figure 3.6: Lean proof (mathlib, algebra.gcd_domain)

13

3 Preliminaries

Next, let us turn from proofs to denitions. Isabelle oers various denitional tools:

• The most basic one, the definition command [99], denes a new constant or non-
recursive function and can be regarded as a simple abbreviation that can be unfolded.
This is just a very thin wrapper around the basic denitional mechanisms provided by
Isabelle’s kernel.

• The primrec command [12] allows primitively-recursive denitions for natural num-
bers or algebraic datatypes.

• The function package [69, 70] supports more complex recursion patterns including
nested and mutual recursion or recursions with non-obvious termination arguments
(which must then be provided by the user).

• The inductive and coinductive commands [99] allow dening inductive and
coinductive predicates, i.e. describing predicates by giving a set of inference rules.

• The corec command [13] allows dening corecursive functions (e.g. to transform
innite streams).

• The (co-)datatype package [12, 13] provides support for dening algebraic datatypes
and codatatypes.

Again, all of these tools must go through the Isabelle kernel to do their work – every denition
made with them ultimately reduces to the small logical primitives oered by the kernel.

Denitions and proofs can be organised in modules, which are referred to as theories. Each
theory is one le, and each theory can import several other theories in order to use all the
denitions and theorems from them and their respective dependencies. A typical Isabelle
theory will have between several hundred and several tens of thousands of lines. One step up
in the hierarchy, theories can be bundled together into a session. Such sessions can be built (i.e.
processed in batch) and the resulting state can be stored on disk. This allows a user to quickly
use the results from a session without having to process all of its material every time Isabelle
is started (which, depending on the size of the session, can take between several minutes and
several hours).

3.3 The Isabelle Distribution and the Archive of Formal Proofs

The Isabelle distribution is what a user would download in order to use Isabelle. It contains a
large number of tools (including the ones mentioned in the previous section) and a multitude
of theories, written by many dierent contributors over the years. The most important sessions
in the context of this work are (in the 2020 release of Isabelle):

• Pure, which contains the bootstrapping of Isabelle’s metalogic
• HOL, which provides the axiomatisation of the HOL object logic, all the basic tools and
tactics mentioned before, the code generator, and much basic library material e.g. on
natural numbers, integers, and lists, but also some more advanced mathematics (basic
algebra, topology, and analysis)

14

3.4 Notation and Terminology

• HOL-Computational_Algebra (primes, fundamental theorem of algebra, Euc-
lidean domains, univariate polynomials, formal power series)

• HOL-Number_Theory (residue rings, Euler’s 𝜑 function, primitive roots, quadratic
reciprocity)

• HOL-Analysis (advanced linear algebra, topology, analysis, measure and integration
theory)

• HOL-Complex_Analysis (complex analysis including e.g. Cauchy’s integral for-
mula, the residue theorem, the great Picard theorem, the Riemann mapping theorem)

• HOL-Library (various unsorted material such as Landau symbols, Stirling numbers,
permutations, multisets)

Only a comparatively small number of core developers can directly contribute to and maintain
the material in the Isabelle distribution, although there are occasional contributions from the
outside (which are then integrated by a member of this core group). The distribution contains,
for the most part, only fairly ‘general-purpose’ formalisations and tools.
For more special-purpose contributions, there is the Archive of Formal Proofs (AFP)2, a

collection of Isabelle formalisation projects on various topics in mathematics and computer
science. At the time of writing this dissertation, it contains 539 entries from 356 authors and
a total of roughly 2.5 million lines of formal proof documents, and all of these numbers have
been growing steadily. All submitted entries are reviewed by a board of ve editors.3 The
Isabelle community ensures that all entries always work with the most recent version of
Isabelle. This archive is the most important repository for Isabelle proof developments, and
when publishing an article on a formal proof development in a journal or at a conference, it
is customary to include a reference to the corresponding AFP entry.

The Isabelle distribution and the AFP together form what Makarius Wenzel calls the ‘visible
universe of Isabelle’. Its contents are always kept up-to-date with the latest developments of
Isabelle (mostly by the core developers) in a continuous maintenance eort. This is of great
importance, because developments outside this universe tend to ‘break’ more and more unless
they are actively maintained (as Isabelle continues to evolve while they stagnate). For that
reason, users are greatly encouraged to submit their developments to the AFP.

3.4 Notation and Terminology

In this thesis, I will use the terms ‘interactive theorem prover’ and ‘proof assistant’ inter-
changeably. I will also sometimes simply speak of ‘theorem provers’ when only interactive
ones are meant. To those among the readers who are not from the theorem proving community,
I must also clarify that when I say in this thesis that I proved some statement or dened some
concept, I always mean that I wrote a formal proof or denition for it in the Isabelle system,
and usually that I was the rst person who did this. In almost all circumstances, I was of course
not the rst person to work these things out on paper.

2https://isa-afp.org
3I myself have been an editor since 2018.

15

https://isa-afp.org

3 Preliminaries

Both in the main part of the thesis and the attached articles, I mostly avoid showing Isabelle
syntax in order to keep the presentation as concise and readable as possible, and to emphasise
that most of what I present is not specic to Isabelle but could well be done in other system
as well, given enough time and eort.

As for mathematical notation, there is not terribly much of it to introduce here that is both
unusual or unclear enough to deserve explanation and used by more than one of the four
dierent articles that will be presented in this thesis. Any notation relevant to only one of
them will be introduced in the corresponding chapter, or in the article itself. For the most part,
note only that:

• I will make use of λ notation for functions as mentioned before.
• Function application will sometimes be written in the mathematical style 𝑓 (𝑥,𝑦) and
sometimes as 𝑓 𝑥 𝑦 as appropriate.

• log will always denote the natural logarithm.
• I will always write log𝑘 𝑥 to denote (log𝑥)𝑘 , not the iterated logarithm log . . . log𝑥︸ ︷︷ ︸

𝑘 times

.

However, there is one important shared piece of notation that does require more extensive
clarication, as its use in the literature is often quite imprecise, namely that of Landau symbols,
which will be explained in great detail in the next section.

16

3.5 Landau Symbols

𝑓 ∈ 𝑂 (𝑔) ←→ ∃𝑐 > 0. ∃𝑥0. ∀𝑥 ≥ 𝑥0. |𝑓 (𝑥) | ≤ 𝑐 · |𝑔(𝑥) |
𝑓 ∈ 𝑜 (𝑔) ←→ ∀𝑐 > 0. ∃𝑥0. ∀𝑥 ≥ 𝑥0. |𝑓 (𝑥) | ≤ 𝑐 · |𝑔(𝑥) |
𝑓 ∈ Ω(𝑔) ←→ ∃𝑐 > 0. ∃𝑥0. ∀𝑥 ≥ 𝑥0. |𝑓 (𝑥) | ≥ 𝑐 · |𝑔(𝑥) |
𝑓 ∈ 𝜔 (𝑔) ←→ ∀𝑐 > 0. ∃𝑥0. ∀𝑥 ≥ 𝑥0. |𝑓 (𝑥) | ≥ 𝑐 · |𝑔(𝑥) |
𝑓 ∈ Θ(𝑔) ←→ 𝑓 ∈ 𝑂 (𝑔) ∧ 𝑓 ∈ Ω(𝑔)

𝑓 ∼ 𝑔 ←→ 𝑓 (𝑥) − 𝑔(𝑥) ∈ 𝑜 (𝑓 (𝑥)) ←→ 𝑓 (𝑥) − 𝑔(𝑥) ∈ 𝑜 (𝑔(𝑥))

Table 3.1: Denitions of the ve Landau symbols and asymptotic equivalence (for 𝑥 →∞; analogously
for other lters)

3.5 Landau Symbols

This notation for the asymptotic behaviour of functions (or rather some variation of it) has
its origins in works by Paul Bachmann and Edmund Landau. It is sometimes also called
Bachmann–Landau notation or simply ‘Big-O’ after the𝑂 symbol (which is themost commonly
used Landau symbol in practice).4 The intended meaning of e.g. 𝑓 (𝑥) ∈ 𝑂 (𝑔(𝑥)) is that the
function 𝑓 (𝑥) is at most of the order of 𝑔(𝑥), i.e. 𝑓 (𝑥) is bounded by some multiple of 𝑔(𝑥).
The precise meaning, however, is often unclear:

• What does this mean for functions that take negative values? Is it 𝑓 (𝑥) ≤ 𝑐 𝑔(𝑥)? Or
perhaps |𝑓 (𝑥) | ≤ 𝑐 |𝑔(𝑥) |? Or even |𝑓 (𝑥) | ≤ 𝑐 𝑔(𝑥)?

• Does the boundedness have to hold for all 𝑥 or only for suciently large 𝑥? Or for 𝑥
suciently close do 0?

• Is 𝑔(𝑥) implicitly assumed to always be non-zero? Or at least for suciently large 𝑥?
• If we restrict ourselves e.g. to integer-valued functions, can 𝑐 also only be an integer or
can it also be a real number?

In some contexts, these dierent conventions are not too signicant. For instance, in algorithm
analysis, the functions that are considered are typically non-negative, so that the rst question
is irrelevant. They are also often dened on the non-negative integers, and the 𝑔(𝑛) on the
right-hand side is typically positive except for possibly a few exceptions, so that the second
and third issue also mostly disappear.

For suciently well-behaved positive functions, the question of whether the boundedness
holds for all 𝑥 or only for suciently large 𝑥 can be seen to be irrelevant by choosing a large
enough constant 𝑐 . It is therefore often convenient to use the convention that it holds only
eventually when showing a ‘Big-O’ statement and to switch to the convention that it holds
for all inputs when using a previously proven ‘Big-O’ statement.

4Knuth [68] gives a brief overview of the history of the various Landau symbols.

17

3 Preliminaries

In algorithm analysis, Landau symbols are usually used to study the behaviour of functions
for 𝑥 → ∞. However, in mathematical analysis, the 𝑂 (. . .) symbol is also often used in the
context of the local behaviour of real or complex functions. For instance, Taylor’s theorem for
a function 𝑓 : R𝑚 → R𝑛 that is 𝑘-times dierentiable at 𝑥 is often written as

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 𝑓 ′(𝑥)ℎ + . . . + 𝑓
(𝑘) (𝑥)
𝑘! ℎ𝑘 + 𝑅(ℎ) where 𝑅(ℎ) ∈ 𝑂 (ℎ𝑘+1) ,

where the 𝑂 (. . .) implicitly contains the restriction ‘for suciently small ℎ.’5
In the context of a theorem prover, a clear choice for the denition of 𝑂 (. . .) etc. must be

made once and for all. In Isabelle, the situation is now as follows: I dened ve Landau symbols,
plus the related notion of asymptotic equivalence, written as 𝑓 (𝑥) ∼𝑔(𝑥). Their denitions can
be found in Table 3.1. These symbols were originally bundled in an AFP entry called Landau
Symbols, but were later moved to the Isabelle distribution to allow using them also to aid
proofs within the standard library.

When I designed these denitions at the beginning of my PhD project, I had to attempt to
choose one particular precise meaning while still allowing the user to use these symbols in a
exible way in the wide variety of dierent contexts in which they are practically used. Since
there are ve Landau symbols in total, the choices should also be uniform among all these
symbols and make sense for all of them. In the end, I made the following decisions:

• No assumptions on zeroness or non-negativity of functions are made.
• The absolute value (or rather the norm) is used in order to make the Landau symbols
truly scale-invariant in the sense that 𝑂 (𝑎𝑓 (𝑥)) and 𝑂 (𝑓 (𝑥)) are the same for any
constant 𝑎 ≠ 0.

• 𝑐 can always be any positive real number.
• The precise neighbourhood in which the boundedness should hold is 𝑥 →∞ by default
but can be adjusted with an additional argument.

To elaborate on the last point, the Isabelle/HOL library (like some libraries in other proof
assistants) uses lters [64], a concept going back to Bourbaki, to denote topological concepts
such as neighbourhoods and limits. These lters are very powerful and modular abstractions
for such topological matters (and much more), but the details of how they are dened and
how they work are not relevant for this thesis. Let me only give these examples: the ‘at-top’
lter corresponds to 𝑥 →∞ (i.e. the neighbourhood of∞ in a linear order), whereas the ‘at 𝑐’
lter corresponds to the pointed neighbourhood of the point 𝑐 .
This lter-centred approach to Landau symbols (which was suggested to me by Johannes

Hölzl) is very exible. For example, the following can be achieved:

• The abovementioned bound in Taylor’s theorem can be written as ‘𝑅(ℎ) ∈ 𝑂at 0(ℎ𝑘+1)’.
5To complicate matters even more, both mathematicians and computer scientists often write terms such as
𝑓 (𝑥) = 𝑒𝑥+𝑂 (1) where 𝑂 (1) implicitly stands for ‘some function that is 𝑂 (1).’ Enabling such notation in the
context of a proof assistant is dicult, although there is work on this in Coq [1]. In some contexts, it is already
possible to write such things in Isabelle, but I for one do not make use of it.

18

3.5 Landau Symbols

• The alternative meaning of Landau symbols where the inequality must hold for all
inputs can be achieved by using the ‘top’ lter, which represents the entire set of possible
inputs for the function (not to be confused with the ‘at-top’ lter).

• By using product lters, the Landau symbols can be used for multivariate functions as
well. This was done e.g. by Zhan and Haslbeck [103] to analyse algorithms taking more
than one input.

• Suppose we are analysing the sorting algorithm insertion sort, which sorts a given list
𝑥 with 𝑛 elements, taking 𝑡 (𝑥) steps of time. It is well-known that 𝑡 (𝑥) ∈ 𝑂 (𝑛2) for
suciently large 𝑛, but it is not immediately clear how to capture this formally since
the left-hand side is in terms of the list 𝑥 , not its size 𝑛. Clearly, the intended meaning
is somehow that this holds for all lists of size 𝑛 for any suciently large 𝑛. In Isabelle,
one can actually easily achieve exactly this meaning by writing

𝑡 (𝑥) ∈ 𝑂 length going-to at-top(length(𝑥)2) ,

with the ‘going-to’ lter stating that the intended asymptotic meaning is that it is the
length of the input that must be suciently large.

• Lastly, Stirling’s formula for the complex-valued Γ function states that

Γ(𝑧) ∼
√︂

2𝜋
𝑧

(𝑧
𝑒

)𝑧
uniformly as |𝑧 | → ∞ but only if 𝑧 lies within the cone |arg(𝑧) | ≤ 𝛼 for a xed angle
𝛼 < 𝜋 . We can write this in Isabelle by annotating the ∼ with the lter

at-innity u principal (complex-cone (−𝛼) 𝛼)

where u denotes the greatest lower bound of two lters (the intersection, in a sense).

This illustrates how widely usable and exible Isabelle’s Landau symbols are.

19

4 Summary of Contributions

The overall theme of the work presented here is the formalisation of mathematics in a proof
assistant (or interactive theorem prover), with a particular focus on asymptotic properties. I
used the aforementioned Isabelle/HOL as the underlying system, but the work could just as
well be replicated in any proof assistant that uses some form of classical logic suitable to the
formalisation of standard mathematics. In the following, I will give a very brief and high-level
overview of the work presented in the four publications that form this publication-based dis-
sertation – more detailed summaries and background can be found in the remaining chapters.

Semi-Automatic Real Asymptotics [39]. This publication presents an automatic proof
procedure very much in the spirit of the series expansion procedures implemented in com-
puter algebra systems. It facilitates reasoning about limits and other asymptotic properties of
concrete real-valued functions. A large class of functions is covered (combinations of basic
arithmetic, exp, log, sin, etc.).

Divide-and-Conquer Recurrences [30]. Here, I describe the rst formalisation of the
Akra–Bazzi Theorem on the asymptotics of divide-and-conquer recurrences. It is a generalisa-
tion of the well-known Master Theorem. These recurrences often arise in the asymptotic run-
ning time analysis of divide-and-conquer algorithms. Such algorithms (including e.g. Merge
Sort and Karatsuba multiplication) and their analysis are a staple of undergraduate algorithms
courses and textbooks (see e.g. Cormen et al. [25]) and are of great practical importance as
well. The precise solutions to such recurrences are typically very complicated and can often
not be expressed in a closed form, but the classic Master Theorem and the Akra–Bazzi The-
orem provide a ‘cookbook method’ to determine their asymptotic growth relatively easily. In
addition to the formalisation of the theorem itself, some automation infrastructure is provided
in order to facilitate applying the theorem to concrete examples.

Linear Recurrences [40]. In contrast to divide-and-conquer recurrences, linear recurrences
(with constant coecients) are a class of recurrence relations for which the exact solutions
have a very simple form and can be determined fairly easily. This work describes the (probably)
rst formalisation of the theory of these recurrences (both homogeneous and inhomogeneous)
and an executable solver for them. However, the exact solutions can contain irrational algeb-
raic numbers, which are dicult to handle. For the use case where one is only interested in
asymptotic upper bounds of the solution, I therefore also implemented a certifying approach
that uses ideas from analytic combinatorics and tools from complex analysis to prove ‘Big-
O’ bounds. The exact solver relies on a formalisation of executable algebraic numbers by
Thiemann et al. [94] and the certier relies on a formalisation of executable complex-root
counting by Li et al. [73]

21

4 Summary of Contributions

Analytic Number Theory [29]. This is by far the largest individual formalisation work
presented in this thesis: a formalisation of most chapters of Apostol’s classic textbook Introduc-
tion to Analytic Number Theory. Analytic number theory arose in the mid-19th century in the
study of the distribution of prime numbers, and this is still the application that it is best known
for. Its most famous theorems are the Prime Number Theorem (on the asymptotic distribution
of primes) and Dirichlet’s Theorem (on the innitude of primes in arithmetic progressions),
and its most important tools are Dirichlet series and the Riemann Z function. All of this (and
much more) is covered in Apostol’s book and was formalised by me as part of this work.

Related Contributions Without Formal Publications. In addition to the four articles
that were just mentioned, I also have other contributions to the Isabelle/HOL distribution and
the Archive of Formal Proofs that are not part of any formal publication. I would like to briey
mention some that are related to this thesis because they are either directly used by the other
work described in it or also concern the subject of asymptotics.

In the Isabelle distribution, there are:

• the Γ function
• the radius of convergence of a power series and various summability tests
• the generalised binomial theorem
• the connection between formal power series and complex functions

The last item here is particularly signicant since a similar connection between a class of
formal series and analytic functions will also appear in my work on analytic number theory
in Chapter 8.

As for the Archive of Formal Proofs, I specically have entries on:

• Stirling’s formula (the asymptotics of 𝑛! and Γ) [31]
• Catalan numbers, including an analytic-combinatorics-inspired derivation of their asymp-
totics [26]

• basic properties of some special functions like the error function and the Lambert𝑊
function, including their asymptotic behaviour [32, 36]

• the Euler–MacLaurin formula (relating sums to integrals) [33]
• advanced properties of Bernoulli numbers (building on work by Bulwahn) [18]

The last two items again play an important role in analytic number theory, specically in
connection with the Hurwitz and Riemann Z functions.

22

5 Semi-Automatic Real Asymptotics

“ Divergente Rækker ere i det Hele noget Fandensskab,
og det er en Skam at man vover at grunde nogen Démonstration derpaa.
Man kan faae frem hvad man vil naar man bruger dem,
og det er dem som har gjort saa megen Ulykke og saa mange Paradoxer.

Divergent series are, all in all, an abomination,
and it is shameful that one should dare base any proof upon them.
Using them, one can obtain whatever one wishes
and they have created so much misfortune and so many paradoxes.

— Niels Henrik Abel, in a letter to Bernt Holmboe (1826) ”
“ The series is divergent;

therefore we may be able to do something with it.
— attributed to Oliver Heaviside ”

It is not surprising that when formalising mathematics with a proof assistant, one frequently
has to prove limits and other asymptotic properties of concrete functions. On the simple end
of the spectrum, there are e.g.

lim
𝑛→∞(𝑛 + 𝑐) lim

𝑛→∞
𝑛

𝑛2 + 1 𝑐 𝑥𝑛 ∈ 𝑂 (𝑒𝑥) ,

which a human mathematician would regard as completely trivial. On the other hand, there
are problems such as

log𝑛 𝑘
𝑘
− 1
𝑛 + 1

(
log𝑛+1(𝑘 + 1) − log𝑛+1 𝑘) ∼ 1

2𝑘
−2 log𝑛 𝑘 for 𝑘 →∞

lim
𝑥→∞

(
1 − 1

𝑏 log1+Y 𝑥

)𝑝 (
1 + 1

logY/2
(
𝑏𝑥 + 𝑥 log−1−Y 𝑥)

)
−

(
1 + 1

logY/2 𝑥

)
= ?

which are fairly tedious to do even on paper.

� Recall that log𝑘 𝑥 means (log𝑥)𝑘 , not the iterated logarithm.

Unfortunately, in my personal experience, all of these are tedious to do in a theorem prover.
The ones that are easy on paper tend to be easier in the theorem prover as well, but still: even

23

5 Semi-Automatic Real Asymptotics

for one of the trivial problems listed above, one might need a few lines of formal proofs and
remember the names of all the required library theorems. Since such simple problems tend
to arise very often, this eort accumulates and becomes quite cumbersome in any serious
mathematical formalisation project involving asymptotic arguments. As for the more dicult
problems, my rst version of the formal proof of the last example above required 700 lines
of formal proofs and more than a week of time (see the attached article in Chapter B in the
appendix).
On the other hand, unveried symbolic computer algebra systems such as Mathemat-

ica [102] or Maple [97] have been solving such problems fairly well since the 1990s. The
painful experience of having to prove asymptotic statements like the ones above over and
over again caused me to look into how modern computer algebra systems solve such prob-
lems. This brought me to the work by Gruntz [50], which ultimately led me to the Multiseries
expansions by Shackell et al. [87].

The nal outcome of my work in this area was then a proof-constructing procedure1 that
can compute Multiseries expansions for a wide variety of real-valued functions, from which
the desired asymptotic properties of the function (such as limits or ‘Big-O’ behaviour) can
then be read o. I called the procedure semi-automatic because it relies on Isabelle’s existing
automation to solve the question of whether a given expression is or is not equal to zero,
and if it is not, whether it is positive or negative. When this automation fails, the user must
step in and supply additional facts until the automation can deduce this information. In my
experience, this does not happen particularly often in practice.

This procedure has since become invaluable to me in automating both the abovementioned
multitude of trivial asymptotic problems and themore dicult problems that arise occasionally.
In particular, it facilitates working with integrals or innite sums: rigorous formal proofs
require establishing integrability or summability explicitly, and this can often be done most
easily by performing a comparison test with a suitable ‘Big-O’ bound.
For example, the rst of the last two examples given above arises in proving the well-

denedness of the Stieltjes constants (the Laurent series coecients of Z (𝑠) at 𝑠 → 1). These
are dened as an innite sum whose convergence is most easily shown by noting that the
summand is 𝑂 (𝑘−1.5), and 𝑘−1.5 is clearly summable. This ‘Big-O’ estimate involves cancella-
tion, so it would have been quite tedious to prove by hand in Isabelle, whereas the automation
can now do it easily.

The other of the two examples arose in the formalisation of the Akra–Bazzi theorem (which
will be covered in Chapter 6). As mentioned above, the rst, manual proof for this limit was
over 700 lines long and took over a week to write (not counting quite some time before that to
understand how to even prove it rigorously on paper). This experience was in fact my original
motivation for creating real_asymp – which can now prove it fully automatically in less
than a second.

1‘Proof-constructing’ means that the procedure builds an actual proof by (at the end of the day) interacting with
the Isabelle kernel, as opposed to acting as or using some kind of oracle (such as computational reection).
This means that it can also construct a proof object, although this is usually not enabled in Isabelle. In principle,
this does however open up the possibility of replaying such proofs in other theorem provers.

24

5.1 Multiseries

5.1 Multiseries

The basic tool upon which real_asymp is based is the concept of Multiseries. A Multiseries
is a formal power series in 𝑛 variables, with real coecients and exponents. The variables
themselves are functions 𝑏1(𝑥), . . . , 𝑏𝑛 (𝑥) of a real variable 𝑥 . Consequently, the monomials
of a Multiseries are of the form 𝑐 𝑏1(𝑥)𝑒1 . . . 𝑏𝑛 (𝑥)𝑒𝑛 . The vector of these 𝑛 functions is called
an asymptotic basis.
By convention, we always consider series at the point 𝑥 →∞. The functions in an asymp-

totic basis are also, by convention, required to tend to ∞ as 𝑥 → ∞. Furthermore, they are
sorted descendingly by growth in the sense that log𝑏𝑖+1(𝑥) ∈ 𝑜 (log𝑏𝑖 (𝑥)). This implies, in
particular, that 𝑏𝑖 (𝑥)Y grows faster than 𝑏𝑖+1(𝑥)𝑒 for any Y > 0 and any 𝑒 . Due to this, asymp-
totic comparisons of monomials are very easy: comparing the growth of two monomials is
equivalent to comparing their exponent vectors lexicographically.
The following sections will give a brief informal explanation of Multiseries with the aim

to convey the general picture. More detailed information on these theoretical aspects can be
found in the works of Richardson et al. [87], Shackell [90], and Van der Hoeven [62].

Formal Definition

Formally, Multiseries can be seen simply as a function from exponent vectors to coecients,
i.e. R𝑛 → R. However, additional restrictions on the support of this function must be made. In
our setting, we will always deal with Multiseries with nitely-generated support, i.e. whose
support is contained in a set of the form

{𝛼 + _1𝛽1 + . . . + _𝑘𝛽𝑘 | _𝑖 ∈ N} for xed vectors 𝛼 ∈ R𝑛 and 𝛽1, . . . , 𝛽𝑘 ∈ R𝑛≤0.

This formal view is, however, not particularly useful for implementation purposes. Since the
end goal is not to have a nice algebraic formalisation of Multiseries but rather to have a
practical tool for asymptotic reasoning, the Isabelle formalisation does not dene Multiseries
this way. Rather, it follows the same approach that is used in the Maple implementation by
Salvy [97], which uses a more application-driven hierarchical denition. I will now explain
what this representation looks like.

Representation

Let us rst consider ‘normal’ generalised power series – that is, power series in one variable
𝑥 where exponents can be any real number. These are essentially Multiseries with only one
basis element, which is 𝑥 . Under reasonable support conditions, they can be thought of and
represented as a linear sequence of coecients and exponents, where the exponents are
required to decrease strictly. For instance, the power series expansion of 𝑒1/𝑥 at 𝑥 → ∞ can
be represented as the sequence 1 + 𝑥−1 + 1

2𝑥
−2 + . . .

In a functional setting, the obvious representation of such a series is simply a (possibly
innite) list of pairs of real numbers (coecient and exponent). In Isabelle/HOL, that type
would be written as (real × real) llist (since possibly-innite lists are called ‘lazy lists’ in
functional programming).

25

5 Semi-Automatic Real Asymptotics

1
𝑥−1 · exp(𝑥)0 + 1 · exp(𝑥)−1 + 1 · exp(𝑥)−2 + . . .

1 · 𝑥0 1 · 𝑥0

1 · 𝑥−1 + 1 · 𝑥−2 + 1 · 𝑥−3 + 1 · 𝑥−4 + . . .

Figure 5.1: A hierarchical illustration of the Multiseries of the function 1
𝑒𝑥−1 + 1

𝑥−1 for 𝑥 → ∞ w.r.t.
the basis 𝑏1 (𝑥) = exp(𝑥) and 𝑏2 (𝑥) = 𝑥 .
The uppermost layer (represented by a double rectangle) is a power series in 𝑏1. Its coef-
cients are again Multiseries w.r.t. the singleton basis 𝑏2, which are represented by the
other rectangles below. The circled digits ‘1’ in the in the single-framed rectangles are then
simply Multiseries w.r.t. the empty basis (i.e. constants).

For Multiseries, this simple linear representation is usually not possible. Consider the fol-
lowing example:

1
𝑥 − 1 +

1
𝑒𝑥 − 1 ∼

∞∑︁
𝑖=1

𝑥−𝑖 +
∞∑︁
𝑖=1

exp(𝑥)−𝑖

The function on the left-hand side has the Multiseries expansion on the right-hand side at
𝑥 →∞. This series is a innite sequence of monomials of the form 𝑥−𝑖 , followed by an innite
sequence of monomials of the form exp(𝑥)−𝑖 . If we implemented the series as simply a lazy
list of monomials, the information on the second term would be completely lost: if we were to
subtract 1

𝑥−1 from our series, we should be able to nd that the leading term is now exp(𝑥)−1
– but with the linear representation, we would be left with nothing but an innite number of
zero terms.
In general, it is even possible to have e.g. an innite sequence of innite sequences of

monomials. To accommodate this more intricate structure, one can adopt a hierarchical view:

• A Multiseries with an empty basis is just a single real number.
• A Multiseries with a basis 𝑏1, . . . , 𝑏𝑛 is a generalised power series in 𝑏1(𝑥) whose coe-
cients are Multiseries with the basis 𝑏2, . . . , 𝑏𝑛 .

The following pseudocode illustrates roughly how Multiseries are dened in Isabelle/HOL:

[] multiseries = real
[𝑏1, . . . , 𝑏𝑛] multiseries = ([𝑏2, . . . , 𝑏𝑛] multiseries × real) llist

Figure 5.1 illustrates this principle on our earlier example. The list of the innitely many
monomials 𝑥−𝑖 together forms the rst monomial of the overall Multiseries, and each of the
monomials exp(𝑥)−𝑖 is another monomial after that. Thus, all the asymptotic information is
preserved: if we were to subtract 1

𝑥−1 from this series, the rst monomial of the Multiseries
would disappear and the new leading term would be exp(𝑥)−1, as it should be.

26

5.1 Multiseries

Connecting Series and Functions

Although Multiseries are convergent in many cases, they can be divergent2 (cf. e.g. Stirling’s
formula for the Γ function). This means that looking at a particular Multiseries, it is not always
immediately obvious which actual real function (if any) it corresponds to.

However, in our case, we are only interested in attaching a Multiseries to a known function,
which can be done in analogy to Poincaré series. For this purpose, let us rst again consider
the easier setting of ‘normal’ power series where we only have one basis element 𝑥 . For a
function 𝑓 : R→ R and such a series,

𝑓 (𝑥) ∼
∞∑︁
𝑖=0

𝑐𝑖𝑥
𝑒𝑖

holds in the sense of a Poincaré expansion i(
𝑓 (𝑥) −

𝑁∑︁
𝑖=0

𝑐𝑖𝑥
𝑒𝑖

)
∈ 𝑜 (𝑥𝑒𝑖) for all 𝑁 ∈ N .

A nice alternative coalgebraic formulation of this is the following inference rule:

𝑓 (𝑥) ∈ 𝑂 (
𝑥𝑒0

)
𝑓 (𝑥) − 𝑐0𝑥𝑒0 ∼ ∑∞

𝑖=0 𝑐𝑖+1𝑥
𝑒𝑖+1

𝑓 (𝑥) ∼ ∑∞
𝑖=0 𝑐𝑖𝑥

𝑒𝑖

If we interpret this inference rule as the denition of a coinductive relation ∼, we obtain
exactly the same predicate as with the Poincaré denition, but can use corecursion to reason
about it. For instance, the correctness lemmas for operations on series become straightforward
coinduction proofs.
A very similar inference rule can be used to dene a ∼ relation on Multiseries. The main

dierence is that since the coecients are then again Multiseries (with a smaller basis), these
also need to recursively satisfy the ∼ relation for the functions that they represent.

The Anatomy of the Basis Functions

Let us now turn to what form the asymptotic bases have concretely. In our setting, every
basis always contains the function 𝑥 . After this 𝑥 , we can have a list of increasingly iterated
logarithms of 𝑥 . Before the 𝑥 , we can have exponentials of functions that already have an
expansionw.r.t. the smaller basis elements after it. For the purpose of illustration, the following
is a valid asymptotic basis:

exp(exp(𝑥2) + exp(√𝑥)), exp(𝑥2 − 𝑥), exp(𝑥), exp(√𝑥),
𝑥, log𝑥, log log𝑥, log log log𝑥

2In case the reader now feels some unease concerning the earlier quotation by Abel, they need not worry. Abel
was referring to unsound manipulation of divergent series. No such issues arise in our context, and even if
they did, the theorem prover would force us to handle them in a sound way.

27

5 Semi-Automatic Real Asymptotics

This approach is sucient to treat a wide variety of functions, including everything built from

• basic arithmetic
• exponentials, logarithms, roots
• the ‘absolute value’ and sgn functions
• the trigonometric functions sin, cos, tan as long as their argument does not tend to∞
• arctan, Γ (the Gamma function),𝜓 (the Polygamma functions), erf (the error function),
Bessel functions, the Riemann Z function3

This can also be extended to other classes of functions (such as implicit functions, inverse
functions, and solutions of dierential equations [90]) but that is certainly beyond the scope
of the present work.

5.2 Implementation

Shackell et al. [87] sketch a bottom-up syntax-directed procedure to produce Multiseries
expansions for a real-valued function that is given as an explicit expression. The basis of the
Multiseries is computed on-the-y, starting with the basis 𝑥 and adding new basis elements
as needed.
The Isabelle implementation of real_asymp follows exactly this approach. Of course,

the traditional implementation of the algorithm by Shackell et al. is in the context of a com-
puter algebra system, where only a result has to be produced. Since we are working in a
theorem prover, we must produce theorems in every step. real_asymp must prove the well-
formedness of all the asymptotic bases and Multiseries it produces, and that the Multiseries is
indeed an expansion for the given function. To do this, an Isabelle/HOL function was dened
and proven correct for each of the operations in the syntax-directed procedure (under some
suitable preconditions). The actual real_asymp procedure then only has to

• construct the Multiseries for the function expression bottom-up,
• plug the correctness results of the relevant operations together,
• prove the arising preconditions (which are often of the form ‘this real-number term is
non-zero’ or ‘this real-number term is greater than 1’),

• evaluate the resulting Multiseries as far as needed (usually until the leading term can
be read o),

• interpret the result (e.g. if the leading term is of the form 𝑐 (𝑥)𝑏1(𝑥)𝑒 with 𝑒 < 0, we
know that the function tends to 0).

This approach naturally leads to a proof-producing procedure: every step of the reasoning
done by real_asymp passes through the Isabelle kernel.
The evaluation of the Multiseries requires a way to lazily expand equational denitions

until a certain point, which is why real_asymp contains a simple ad-hoc proof-producing
engine for lazy evaluation of Isabelle/HOL terms. Since the evaluation must produce Isabelle
3Of these special functions, only arctan, Γ, and erf were implemented in real_asymp, and only partially.

28

5.3 Asymptotic Interval Arithmetic

theorems, there is signicant performance overhead in this step compared to e.g. a computer
algebra system. Sharing of common subexpressions is currently also not supported, since the
combination of sharing and producing theorems is not straightforward.
One problematic aspect of the entire implementation is the aforementioned determina-

tion of signs and zeroness. Even for constants built from a fairly restricted set of operations,
determining zeroness is not known to be decidable. For the most basic setting of exp–log func-
tions, Richardson [86] gave a partially correct algorithm whose termination is contingent on
Schanuel’s conjecture, a deep conjecture in transcendental number theory. In the considerably
more liberal setting that we have, zero equivalence (and thus also sign determination) are
known to be undecidable due to another theorem by Richardson [85]. Due to the complexity
of the problem, the real_asymp procedure simply uses Isabelle’s simplier and optionally
Isabelle’s approximation package [63] as heuristics to solve such problems, and fails if it
is unable to determine the signs that way. This is in line with what computer algebra tools do:
Maple, for instance, uses a number of heuristic and probabilistic methods to determine if an
expression is zero but does not implement anything along the lines of Richardson’s algorithm.4

5.3 Asymptotic Interval Arithmetic

Oscillating functions such as sin(𝑥) or b𝑥c for 𝑥 →∞ do not have Multiseries expansions so
that the approach as presented above does not work for them. Generalising the Multiseries
framework to encompass such functions is dicult; some approaches exist (e.g. measured
limits by Salvy and Shackell [89]) but are probably too complicated to justify the additional
complexity for an application such as ours. I therefore implemented another fairly straight-
forward approach that builds on top of Multiseries in a modular way: when real_asymp
encounters a possibly oscillating expression (such as sin(𝑓 (𝑥)) or b𝑓 (𝑥)c where 𝑓 (𝑥) does
not tend to a nite value), it uses reasonable asymptotic lower and upper bounds (e.g. −1 and
1 resp. 𝑓 (𝑥) − 1 and 𝑓 (𝑥) in the previous two examples). This requires implementing a kind
of interval-arithmetic approach for asymptotic expansions, i.e. all the dierent cases in the
syntax-directed procedure mentioned previously now need to be modied to handle the cases
where the input is not just a function with a single Multiseries expansion but possibly one
with an asymptotic lower and upper bound, each having a separate Multiseries expansion.
This adds a considerable amount of implementation eort.

This approach is certainly not complete since the usual problem of interval arithmetic occurs:
wrapping. For a drastic example, consider the function sin(𝑥) − sin(𝑥). Since real_asymp
does not simplify the input term, it infers the bounds [−1, 1] for each of the sin(𝑥) terms,
leading to an overall result of [−2, 2] instead of just 0. A less obvious example would be
sin(𝑥) + cos(𝑥) with the inferred bounds [−2, 2] while the best possible bounds are [−√2,√2].
However, this approach can still handle many practical examples – in particular, it is very
useful in gauging the asymptotic error made by rounding, such as

√︁
b𝑥c = √𝑥 +𝑂 (1√

𝑥

)
.

4according to an answer on Math StackExchange by Jacques Carette, a former Maple developer (https://
math.stackexchange.com/questions/3606561)

29

https://math.stackexchange.com/questions/3606561
https://math.stackexchange.com/questions/3606561

5 Semi-Automatic Real Asymptotics

5.4 Related Literature

There is little other work on automating proofs for asymptotic statements in a theorem prover.
Avigad and Donnelly [6] developed a decision procedure for the fragment of linear Big-O
expressions (which has unfortunately never been integrated into a theorem prover).

In my publication on the Akra–Bazzi theorem [30], I developed some simple, more heuristic
automation for Landau Symbols (see Chapter 6 for more details on this).
Publications on formalisation techniques for asymptotics are also relatively rare. Hölzl et

al. [64] describe how Isabelle/HOL uses lters to denote and reason about limits and other
asymptotic properties (which is also heavily used in my work). Harrison [59] describes the use
of nets for the same purpose in HOL Light. Aeldt et al. [1] describe a formalisation approach
for ‘Big-O’-style asymptotics in Coq, including some tactics to facilitate making assumptions
such as ‘𝑥 is big enough’ in an idiomatic way.
Outside the realm of theorem proving, the most relevant literature that I am aware of are

the aforementioned article by Shackell et al. [87] and dissertation by Gruntz [50], and, for
a more comprehensive view on the matter, a book by Shackell [90]. There is also a book by
Van der Hoeven [62], which takes the somewhat dierent route of Transseries, but I found the
Multiseries approach from the previously mentioned sources more accessible for my purposes.

5.5 Future Work and Outlook

There are still some minor issues with the current version of real_asymp that should
eventually be remedied:

• Sometimes, the expressions arising in intermediate steps become so complicated that
the simplier is no longer able to recognise them as zero. It is not clear if and how this
can be avoided.

• While there is a limited plugin system to add support for new special functions at the
‘user level’, doing so is currently very tedious and only done for the Γ function as a
proof of concept.

• The functions exp, log, sin, etc. all satisfy nice equations w.r.t. addition and/or multiplic-
ation, which makes deriving Multiseries expansions for them fairly easy. For functions
such as Γ and arctan, the situation is more complicated and the support for these is
therefore still incomplete. Shackell [90] briey explains how to handle this case, but
without giving a proof. I was not able to nd an actual proof of this anywhere else in the
literature either. Moreover, it would unfortunately be dicult to integrate that approach
with the current setting of real_asymp on a purely technical level as well.

When I spent more time formalising mathematics after the development of real_asymp,
I also came across the following more ‘high-level’ ideas for future work:

• In exactly the same way as real_asymp, one could write a procedure to determine
Laurent series expansions for meromorphic complex functions. In fact, the implement-
ation would actually be signicantly more straightforward since Laurent series are
conceptually much simpler than Multiseries seeing as there is no ‘asymptotic basis’ –

30

5.5 Future Work and Outlook

just integral powers of 𝑥 . Such a method could automate some of the tedious tasks that
arise when doing complex analysis in Isabelle, such as limits, pole cancellation, and
determination of residues.

• It would be desirable for real_asymp to also work with partial asymptotic informa-
tion, e.g. the user could prove that 𝑓 (𝑥) = 𝑥 +𝑂 (1) and then ask for the limit of 𝑒 𝑓 (𝑥) .
This would, however, require a full rewrite of much of the existing code, and it is not
quite clear how this would interact with the existing ‘asymptotic interval arithmetic’.

The rst item in particular seems very promising, since it would probably be comparatively
little work and result in a very useful tool that could, among other things, simplify some of
the complex-asymptotic reasoning in mywork on the formalisation of analytic number theory.

Looking at other systems than Isabelle/HOL, it should be noted that the mathematical
prerequisites of real_asymp are very moderate: limits (of course), convergent power series,
Landau symbols, and ideally a framework for coalgebraic denitions and reasoning. The
formalisation behindreal_asymp itself is also relatively small and consists entirely of simple
and straightforward proofs. It should therefore be possible to implement a similar procedure
in any system with a library of classical analysis (such as Coq, Lean, or HOL Light) with little
formalisation eort. However, the implementation eort was very substantial in Isabelle and
may well be so in other systems as well.

31

6 Divide-and-Conquer Recurrences

“ Entzwey’ und gebiete! Tüchtig Wort:
Verein’ und leite! Beßrer Hort.

Divide and Conquer! Fine words.
Unite and lead! A better tenet.

— Johann Wolfgang von Goethe (1814)”
The famousMaster Theorem is part of any undergraduate lecture on algorithms. It can be used
for the running time analysis of a large class of classic divide-and-conquer algorithms, which
have the following form:

Input: A problem of size 𝑛
Algorithm: For 𝑛 suciently small, solve non-recursively. Otherwise:

1. split the problem into𝑚 subproblems of size 𝑛/𝑘
2. solve each problem recursively
3. combine the𝑚 subsolutions into a solution for the original problem

If we denote the time required by this algorithm with𝑇 (𝑛) and the time required to recombine
the solutions in the last step of each recursion with 𝑔(𝑛), this gives us the recurrence

𝑇 (𝑛) =𝑚 ·𝑇 (𝑛/𝑘) + 𝑔(𝑛)

for suciently large 𝑛. The Master Theorem allows us to determine the asymptotic growth of
𝑇 (𝑛) in this setting under some mild conditions. The upper half of Table 6.1 lists some notable
example applications of the Master Theorem.
The theorem was introduced by Bentley et al. [10] in 1980. Cormen et al. popularised it

under the name Master Theorem in their famous textbook. For reasons that will be discussed
in the next section, I instead formalised a generalisation by Akra and Bazzi [2] from 1998 that
applies to more general recurrences (such as the ones in the lower half of Table 6.1).

6.1 The Formalised Theorem

My original plan was to formalise the Master Theorem, but the proofs found in textbooks
seemed less than ideal for formalisation. The Master Theorem is divided into three dierent
cases that are proven completely separately. Additionally, due to the discrete nature of the
inputs, algorithms cannot always evenly divide subproblems in practice – for instance, the
Merge Sort recurrence is not really 𝑇 (𝑛) = 2𝑇 (𝑛/2) + 𝑂 (𝑛), but rather 𝑇 (𝑛) = 𝑇 (b𝑛/2c) +

33

6 Divide-and-Conquer Recurrences

Algorithm Recurrence Asymptotics

Binary search 𝑇 (𝑛) = 𝑇 (𝑛/2) +𝑂 (1) Θ(log𝑛)
Merge Sort 𝑇 (𝑛) = 2𝑇 (𝑛/2) +𝑂 (𝑛) Θ(𝑛 log𝑛)
Karatsuba multiplication 𝑇 (𝑛) = 3𝑇 (𝑛/2) +𝑂 (𝑛) Θ(𝑛log2 3)
Ham-Sandwich trees 𝑇 (𝑛) = 𝑇 (𝑛/2) +𝑇 (𝑛/4) + 1 Θ(𝑛log2(1+

√
5)−1)

Median-of-medians 𝑇 (𝑛) = 𝑇 (2/10 · 𝑛) +𝑇 (7/10 · 𝑛 + 6) +𝑂 (𝑛) Θ(𝑛)

Table 6.1: Three divide-and-conquer recurrences related to algorithm analysis with their asymptotics
as given by the Master Theorem, and two for which the Master Theorem does not apply
(but the Akra–Bazzi Theorem does).

𝑇 (d𝑛/2e) +𝑂 (𝑛). This rounding introduces additional diculties and makes it impossible to
nd an exact closed-form solution inmost cases (even though it does not change the asymptotic
result at all). In informal presentations on paper, this aspect is often either ignored completely
or handled through additional case distinctions, which blows up the proof size even more.
From my own formalisation experience, I felt that a more unied and high-level approach

would be easier to formalise, and it was this that led me to the Akra–Bazzi theorem. This
theorem provides one single unied solution (albeit a more complex one) with no case dis-
tinctions, and it solves the issue of rounding by allowing the recursive calls to have arbitrary
‘error terms’ as long as they are small enough. This allows not only rounding up and down,
but also adding arbitrary constants, or even terms such as b𝑛/2 + √𝑛c. It also generalises the
Master Theorem in another way, namely that the subproblems are not required to all have
the same size.
My formalisation follows the presentation by Leighton [72], which generalises the result

by Akra and Bazzi even further and also provides a more elementary proof that seemed more
suitable for formalisation since the mathematical prerequisites for it are minimal.
The precise class of recurrences that the Akra–Bazzi theorem, as presented by Leighton,

applies to is the following:

𝑇 (𝑛) = 𝑔(𝑛) +
𝑚∑︁
𝑖=1

𝑎𝑖 ·𝑇 (𝑏𝑖𝑛 + ℎ𝑖 (𝑛)) (6.1)

with 𝑎𝑖 ≥ 0 and 𝑏𝑖 ∈ (0, 1). Additionally, the recombination cost function 𝑔(𝑛) and the error
terms ℎ𝑖 (𝑛) need to satisfy some mild growth conditions. The resulting growth estimate is

𝑇 (𝑛) ∈ Θ
(
𝑥𝑝

(
1 +

∫ 𝑥

𝑥0

𝑔(𝑢)
𝑥𝑝+1

d𝑢
))

where 𝑝 is the unique real solution of
∑
𝑎𝑖𝑏

𝑝

𝑖
= 1. This rather unwieldy result can be simplied

signicantly for more concrete forms of 𝑔(𝑛) that often arise in practice, which then leads to
a number of simple corollaries that have a form that is very similar to the standard Master
Theorem, but more general (see Table 6.2).

34

6.2 Automation

Case name Assumptions Conclusion

Case 1 (𝑂) 𝑔(𝑛) ∈ 𝑂 (𝑛𝑞) 𝑞 < 𝑝 𝑇 (𝑛) ∈ 𝑂 (𝑛𝑝)
Case 1 𝑔(𝑛) ∈ 𝑂 (𝑛𝑞) 𝑞 < 𝑝 𝑓 (𝑛) > 0

(for su. large 𝑛)
𝑇 (𝑛) ∈ Θ(𝑛𝑝)

Case 2.1 𝑔(𝑛) ∈ Θ(𝑛𝑝 log𝑞 𝑛) 𝑞 < −1 𝑇 (𝑛) ∈ Θ(𝑛𝑝)
Case 2.2 𝑔(𝑛) ∈ Θ(𝑛𝑝/log𝑛) 𝑇 (𝑛) ∈ Θ(𝑛𝑝 log log𝑛)
Case 2.3 𝑔(𝑛) ∈ Θ(𝑛𝑝 log𝑞 𝑛) 𝑞 > −1 𝑇 (𝑛) ∈ Θ(𝑛𝑝 log𝑞+1 𝑛)
Case 3 𝑔(𝑛) ∈ Θ(𝑛𝑞) 𝑞 > 𝑝 𝑇 (𝑛) ∈ Θ(𝑛𝑞)

Table 6.2: The ve cases of the generalised Master Theorem as formalised in Isabelle/HOL.
The setting is the same as that described in Equation (6.1), with 𝑝 the unique real solution
to

∑
𝑎𝑖𝑏

𝑝

𝑖
= 1. Which of the cases applies (if any) depends on the asymptotics of 𝑔(𝑛).

The formal proof consists of:

• proving the growth estimates for continuous recurrences of the type R→ R (with some
additional technical assumptions)

• lifting the estimates to discrete recurrences of the type N→ R (while discharging the
aforementioned assumptions)

• deriving various corollaries, such as the original Master Theorem

The advantage of this approach is that all the hard work is done in the rst two steps and no
case distinctions are necessary until the very last step, which is a very easy one.
The only major diculty in the formalisation were a number of asymptotic inequalities

that needed to be proven (these were briey mentioned in Chapter 5). Leighton himself did
not give a proof for them but only remarked in a footnote that they can easily be shown by
Taylor expansion. My rst formal proof showed the inadequacy of the existing machinery
for asymptotic reasoning in Isabelle/HOL and led to the development of the real_asymp
method mentioned in Chapter 5, which completely automates the proof of these inequalities
now.

6.2 Automation

For practical applications, the generalised Master Theorem as shown in Table 6.2 is much more
useful than the Akra–Bazzi theorem itself. However, in practice, it is still rather tedious to
instantiate the formalisedMaster Theoremwith all the correct valuesmanually. I therefore also
developed some automation to analyse a given recurrence and, as far as possible, instantiate the
appropriate case of the Master Theorem automatically and solve all obvious proof obligations
arising from it.

Many of the remaining non-obvious proof obligations are growth conditions such as𝑛 log𝑛 ∈
𝑂 (𝑛2), which are obvious to a human but beyond the capabilities of Isabelle’s general-purpose
automation. The real_asymp method from the previous chapter did not yet exist back

35

6 Divide-and-Conquer Recurrences

then either. In order to tackle these proof obligations, I developed some rather basic automa-
tion for Landau symbols in the form of simprocs, which are plugins for Isabelle’s simplier
and are therefore integrated with Isabelle’s general-purpose automation – as opposed to the
real_asymp method mentioned in Chapter 5, which must be invoked manually. In particu-
lar, there are simprocs to:

• cancel dominated terms from Landau symbols, e.g. rewriting 𝑂 (𝑥2 + 𝑥) to 𝑂 (𝑥2)
• cancel common factors, e.g. rewriting 𝑓 (𝑥)ℎ(𝑥) ∈ 𝑂 (𝑔(𝑥)ℎ(𝑥)) to 𝑓 (𝑥) ∈ 𝑂 (𝑔(𝑥))
(requiring a heuristic to prove that ℎ(𝑥) is non-zero for suciently large 𝑥)

• simplify Landau symbols involving products of powers of iterated logarithms, e.g. rewrit-
ing 𝑥𝑎 log𝑏 𝑥 ∈ 𝑂 (𝑥𝑐 log log𝑑 𝑥) to an equivalent statement involving only the exponents
𝑎, 𝑏, 𝑐 , 𝑑

Lastly, I also developed the akra_bazzi_termination tactic, which solves a rather
technical issue: when dening a divide-and-conquer recurrence in Isabelle/HOL with the
function package, one needs to prove termination. The function package can often
prove termination automatically by nding a pattern in which the arguments of the recursive
call get ‘smaller’, but this usually fails for our more complicated divide-and-conquer recur-
sions involving division and rounding. To solve this, the akra_bazzi_termination
tactic proves the termination of such recursion patterns automatically, which makes dening
such divide-and-conquer recurrences and algorithms more convenient in Isabelle.

I used the combination of all of this machinery to give mostly automatic analyses of the
asymptotic growth of the recurrences of several algorithms in Isabelle/HOL, including all
the ones mentioned above. The proofs are very short and simple – they consist of a single
invocation of my master_theorem tactic with some appropriate parameters followed by
proofs of some simple side conditions, which can mostly be done by Isabelle’s automation.1
I believe that my automation makes using ‘my’ Master Theorem much easier for other

Isabelle/HOL users who are not as familiar with my formalisation. To support this claim,
note that the author of an AFP submission has since used this work in his formalisation of
a closest-pair-of-points algorithm [82], without requiring any assistance from me. Zhan and
Haslbeck [103] also incorporated my machinery into their work on verifying asymptotic time
complexity of imperative algorithms and told me in personal communication that they found
it very convenient to use.

6.3 Related Literature

The classic textbook version of the Master Theorem and a sketch of its proof can be found
e.g. in the well-known textbook by Cormen et al. [25] The Akra–Bazzi Theorem was rst
proven (in a weaker form than what I formalised) by Akra and Bazzi using rather elaborate
mathematical tools [2]. My formalisation, on the other hand, is based on an unpublished note
1The parameters that need to be given to the tactic are which case of the Master theorem the recurrence falls
under and – in some cases – the value of 𝑞 (cf. Table 6.2). Nowadays, with real_asymp being available, it
would be possible to try to infer these automatically as well, but I have not yet attempted to do so.

36

6.3 Related Literature

by Leighton [72], which gives a much more elementary proof for a stronger version. Bazzi
and Mitter [9] later also proved an analogue of the Akra–Bazzi theorem for the asymptotic
expected value of probabilistic recurrences.

In the area of theorem proving, there is no other formalisation of the Akra–Bazzi theorem
or the Master theorem that I am aware of. However, based on work by Karp [67], Tassarotti
and Harper [92] formalised a cookbook method for tail-bounds for probabilistic recurrences
that arise in the analysis of certain randomised programs.

37

7 Linear Recurrences

“ Quı̄dam posuit ūnum pār cunı̄culōrum in quōdam locō [. . .]
ut scı̄ret quot ex eō paria germinārentur in ūnō annō
cum nātūra eōrum sit per singulum mēnsem aliud pār germināre
et in secundō mēnse ab eōrum nāt̄ıvitāte germinant.

Someone put one pair of rabbits in a certain place [. . .]
so that he may know how many are born from that pair in a year
when it is their nature to bear another pair in a single month
and these also bear in the second month from their birth.

— Leonardo ‘Fibonacci’ of Pisa, Liber abbaci (1202) ”
Linear recurrences with constant coecients1 are a class of recurrence equations for which a
closed-form solution can be found algorithmically in a comparatively easy way. The most fam-
ous example of such a recurrence are the Fibonacci numbers hinted at in the above quotation.
In modern texts, they are usually dened by the recurrence 𝐹0 = 0, 𝐹1 = 1, 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛
and, perhaps surprisingly, they have the closed-form solution

𝐹𝑛 =
1√
5

((
1 + √5

2

)𝑛
−

(
1 − √5

2

)𝑛)
.

Such recurrences arise in many other settings, including combinatorics and the analysis of
algorithms and data structures. In particular:

• The numerators and denominators of the 𝑛-th convergent of the continued fraction
expansion of the golden ratio 𝜑 = 1

2 (1+
√
5) are 𝐹𝑛+1 and 𝐹𝑛 . This is also the ‘worst case’

in the sense that they converge more slowly than any other continued fraction.
• Fibonacci numbers also appear in the performance analysis of AVL trees, and inspired
the data structure of Fibonacci heaps.

• Similarly, the worst-case behaviour of height-balanced trees satises a linear recur-
rence [74].

• The numbers of possible syllable patterns in metres of Sanskrit prosody are precisely
the Fibonacci numbers (and they were rst studied in ancient India due to this). [91]

• More generally, given a regular language 𝐴, the number |𝐴|𝑛 of words𝑤 ∈ 𝐴 of length
𝑛 satises a linear recurrence in 𝑛.

1From now on, I will write ‘linear recurrence’ and will always implicitly mean ‘with constant coecients’.

39

7 Linear Recurrences

• The complexity descriptors in the automatic algorithm analyserΛΥΩ (‘LUO’, or ‘Lambda–
Upsilon–Omega’) by Flajolet et al. [43] typically satisfy linear recurrences.

I formalised the algebraic theory of linear recurrences with constant coecients based on
rational generating functions. In particular, I formalised the standard result that any such
recurrence has a rational generating function, from which the closed-form solution can then
be read o. The entire process – starting with a recurrence and ending with a closed-form
solution – was formalised in such a way that it yields an executable solver.

7.1 Definitions and Scope

A linear recurrence equation with constant coecients 𝑐0, . . . , 𝑐𝑛 has the form

𝑐𝑘𝑎𝑛+𝑘 + . . . + 𝑐0𝑎𝑛 = 𝑓 (𝑛) for any 𝑛 ∈N ,

where 𝑓 (𝑛) is called the inhomogeneous part. If 𝑓 (𝑛) is identically zero, the recurrence is called
homogeneous. For the most part, the properties that were formalised work in any eld, but
since we will need to fully factor polynomials, it is convenient to work in an algebraically
closed one. The executable part (which requires an executable factorisation algorithm) was
only set up for the eld of complex numbers.

Every homogeneous recurrence has a polynomial–exponential closed-form solution, i.e.

𝑎𝑛 = 𝑝1(𝑛)_−𝑛1 + . . . + 𝑝𝑘 (𝑛)_−𝑛𝑘
where the _𝑖 are roots of the characteristic polynomial 𝑐𝑘𝑋𝑘 + . . . + 𝑐0 of the recurrence. The 𝑝𝑖
are polynomials in 𝑛 whose degree depends on the multiplicity of the corresponding root _𝑖 .

One standard way to show this (and this is the route that was taken in my formalisation) is
to rst show that any such recurrence has a rational generating function. That is, if we form
the generating function

𝐴(𝑧) :=
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛

in the ring of formal power series, then 𝐴(𝑧) is rational – there exist polynomials 𝑃 and 𝑄
such that 𝐴(𝑧) = 𝑃 (𝑧)/𝑄 (𝑧). These polynomials can in fact easily be determined from the
coecients 𝑐𝑖 and the initial values 𝑎0, . . . , 𝑎𝑘−1. The next step is then to factor the denominator
polynomial 𝑄 and perform partial fraction decomposition. After this, a closed form for the
coecients of each summand can easily be read o, and summing up all of them leads to a
closed form for 𝑎𝑛 .
For inhomogeneous recurrences, the exact same approach can be taken as long as the

inhomogeneous part 𝑓 (𝑛) itself has a rational generating function (which is equivalent to it
being a polynomial–exponential function in the above sense).

40

7.2 Implementation

7.2 Implementation

As mentioned before, obtaining an executable solver requires an executable algorithm for
polynomial factorisation. As the Fibonacci example shows, even for simple recurrences with
rational coecients, the roots can be irrational algebraic numbers. Therefore, an executable
formalisation of algebraic numbers is also required. I made use of the algebraic number form-
alisation by Thiemann et al. [94], which comes with a veried factorisation algorithm as
well.

The executable part of my formalisation then consists of executable Isabelle/HOL func-
tions that take some representation of a recurrence (and, in the latter case, the polynomial–
exponential inhomogeneous part) and return the rational generating function (represented
as the pair of numerator and denominator polynomials). This part is still independent of the
formalisation by Thiemann et al. Then, there is a function that performs the factorisation and
partial fraction decomposition and determines the closed form solution from the decompos-
ition. This part makes use of the factorisation algorithm and the executable arithmetic on
algebraic numbers provided by Thiemann et al.

These are then combined into functions that perform the entire process, complemented by
pretty-printing functions that convert the internal representation of the closed-form solutions
into a human-readable format. This was evaluated on a number of examples in the article and
works without problems for all the standard examples like Fibonacci numbers. However, even
for relatively low degrees of about 5, one can easily nd pathological recurrences for which
this code never terminates because the arithmetic on algebraic numbers is too slow since the
degrees of the polynomials attached to them grow very quickly. This is partially due to the
fact that the veried implementation by Thiemann et al. is, of course, not as heavily optimised
as the ones in computer algebra systems like Mathematica. However, as the evaluation section
in the article shows, even systems like Mathematica struggle with such pathological examples
at degrees of about 9 or more.

7.3 Certifying Asymptotic Upper Bounds

As explained in the previous section, the exact closed-form solutions of linear recurrences can
be unwieldy and dicult to compute due to the presence of irrational algebraic numbers and
poor performance at higher degrees. However, for applications such as analysis of algorithms
and data structures, it may well be enough to obtain a good asymptotic upper bound on
the solution (e.g. showing that it is at most quadratic in growth). I therefore used ideas from
analytic combinatorics [42] to provide an executable veried Isabelle/HOL procedure to certify
such ‘Big-O’ bounds eciently.

The basic idea is this: each root _ of the characteristic polynomial contributes a summand of
order 𝑛𝑘−1 |_ |−𝑛 to the solution, where 𝑘 is the multiplicity of _. Therefore, the overall growth
of the solution is determined by the dominant roots – those that are closest to the origin.
Let 𝑟 be the distance of the dominant roots from the origin and 𝑘 the maximum multiplicity
among the dominant roots. Then the solution is clearly 𝑂 (𝑛𝑘−1𝑟−𝑛). Therefore, if we want to
prove that the solution is 𝑂 (𝑛𝐾𝑅−𝑛), we need only show that either 𝑅 < 𝑟 , or that 𝑅 = 𝑟 and

41

7 Linear Recurrences

𝑘 − 1 ≤ 𝐾 . In other words: consider the circle of radius 𝑅 around the origin. Then there are no
roots strictly inside the circle, and all the roots directly on it have at most multiplicity 𝐾 + 1.
These properties can be checked easily without factoring the polynomial, using a square-free
factorisation algorithm (as formalised by Thiemann et al. [95]) and a complex root-counting
algorithm (formalised by Li et al. [73]). As long as the input coecients are all rational, no
arithmetic on irrational numbers is required.

Although this approach follows very naturally and obviously from the closed form of linear
recurrences, it can also be regarded from the more general viewpoint of analytic combinator-
ics2, which provides more context and insight: the asymptotics of a sequence of numbers can
be determined by considering the dominant singularities of their generating function (when
viewed as an analytic function in the complex plane). A singularity at a distance 𝑟 from the
origin contributes a term of order 𝑓 (𝑛)𝑟−𝑛 , where 𝑓 (𝑛) is a subexponential term whose precise
shape depends on the nature of the singularity. For meromorphic functions (including rational
ones, such as here), these singularities are poles, whose contribution is very easy to determine,
leading to the above method.

7.4 Related Literature and Applications

I am not aware of any other work on the general theory of linear recurrences or rational gen-
erating functions in a theorem prover. However, in their recent work on formalising Apéry’s
Theorem, Mahboubi et al. [75] studied some particular complicated recurrences with polyno-
mial (not constant) coecients in Coq, building on tools developed by Chyzak et al. [23].

Outside the context of proof assistants, the theory of linear recurrences and the generating-
function approach to solving them can be considered folklore and is typically taught in under-
graduate courses on discretemathematics. Details on this can be found in various textbooks [48,
49]. The analytic combinatorics perspective mentioned in the last section is also explained in
the book of the same name by Flajolet and Sedgewick [42].
Unveried solvers for linear recurrences are widely available (both standalone such as

PURRS [8] and integrated into computer algebra systems such as Mathematica [102] and
Maple [97]). These typically support a considerably larger class of recurrences than what I
formalised, including systems of equations.

As for applications of my formalisation: I recently began work on a draft article on a (mostly
nished) formal analysis of the worst-case height of height-balanced trees that makes use of
the present linear-recurrence formalisation. My work builds on work by Luccio and Pagli [74]
and includes new (and fully formalised) results on the precise asymptotics of the worst-case
relationship between the size and the height of such a tree.

2This insight is not particularly deep, let alone novel. It is fairly obvious given some knowledge of introductory
analytic combinatorics, cf. for instance the textbook by Flajolet and Sedgewick [42].

42

8 Analytic Number Theory

“ Einstein said ‘God does not play dice with the universe.’
I would like to think that Erdős and Kac replied:
‘Maybe so, but something is going on with the primes.’
— Carl Pomerance on the Erdős–Kac Theorem (1997) ”
“ Die Zahlentheorie ist nützlich, weil man mit ihr promovieren kann.

Number theory is useful because one can obtain a PhD with it.

— Edmund Landau, Vorlesungen über Zahlentheorie (1927) ”
As an advanced case study of asymptotic arguments in Isabelle/HOL, I formalised a large
amount of analytic number theory, following Apostol’s famous textbook [3] for the most part.
As the name suggests, analytic number theory applies methods from analysis (complex ana-
lysis in particular) to number theory. The vast majority of the book focuses on multiplicative
number theory, which includes topics such as divisors, square-freeness and –most importantly
– prime numbers. The formalisation comprises bothmathematical tools such as Dirichlet series
and characters and numerous applications thereof. In total, the vast majority of Apostol’s book
(except for the exercises) was formalised and in some cases the formalisation even goes beyond
the scope of the book.

8.1 Formalised Results

To give only some examples of the material that was formalised:

• basic arithmetic functions such as Liouville’s _ and Möbius’ `
• Dirichlet series (both formal and analytic and the connection between the two)
• the Riemann and Hurwitz Z functions and the Dirichlet 𝐿 functions
• multiplicative characters, especially Dirichlet characters
• the Chebychev functions 𝜗 and𝜓 and their properties
• Mertens’ Theorems
• the prime number theorem (PNT) and Dirichlet’s theorem on the innitude of primes
in arithmetic progressions

• elementary consequences of the PNT, such as the asymptotics of lcm(1, . . . , 𝑛) and sharp
bounds for Euler’s 𝜑 function

43

8 Analytic Number Theory

• the distribution of square-free and coprime numbers

Although some of these results had been formalised before (see Section 8.2), most of them
had not. The express goal of this project was the formalisation of interesting advanced results,
but not in isolation: the results should be built on top of a broad library of basic results that
facilitates work in the formalisation of number theory in the future.

This case study also demonstrated the usability of my asymptotic notation and automation
for the formalisation of ‘proper’ mathematics, and it resulted in several ideas for extensions
and improvements to these tools.

8.2 Related Literature

There is a decent amount of prior formalisation work on number theory, both in Isabelle and
in other systems:

• Basic facts such as the concept of a prime and the fundamental theorem of arithmetic
are available in most proof assistants, and have been for a long time. One of the earliest
(perhaps even the earliest) was the one by Boyer and Moore in NQTHM published in
1979 [15].

• The law of quadratic reciprocity is also available in all major systems, the rst one
probably being the formalisation in NQTHM due to Russino [88].

• Bertrand’s postulate was formalised by a great number of people, including Harrison
in HOL Light, Théry in Coq [93], Riccardi in Mizar [84], Carneiro in Metamath [19],
Asperti and Ricciotti in Matita [5], and Biendarra and myself in Isabelle/HOL [11].

• The elementary Selberg–Erdős proof of the PNT was formalised in Isabelle/HOL by
Avigad et al. [7] and by Carneiro in Metamath [20].

• The complex-analytic proof of the PNT was formalised by Harrison in HOL Light [58],
along with some more basic lemmas.

• Dirichlet’s Theorem on primes in arithmetic progressions was formalised both by Har-
rison in HOL Light [57] and by Carneiro in Metamath [20].

The proof by Avigad et al. in 2004 was the rst formal proof of the PNT and represents
a major milestone in the theorem proving community. Their eort was a tour de force of
formalisation in Isabelle/HOL at a time when the library and tooling of the system was much
less mature than it is now. Unfortunately, their proof development consists of almost 27,000
lines of unstructured tactic scripts andwas never submitted to theArchive of Formal Proofs. The
development has therefore since fallen into disrepair. According to personal communication
with Avigad, it is probably not worth the maintenance eort to make it work with current
versions of Isabelle again. Hence, it is now mainly of historic interest. However, it must be
noted that a considerable number of the lemmas upon which their formalisation was built has
been incorporated into the Isabelle distribution, most notably its number theory library.
Harrison’s analytic proof of the PNT was then another milestone since no other system

had ever come close to having a library of analysis (especially complex analysis) capable of
supporting such a development. Even nowadays, eleven years later, only Isabelle/HOL can

44

8.3 Further Work

rival HOL Light’s complex analysis library (and goes beyond it in some cases), thanks to the
eorts of Larry Paulson and Wenda Li (the former of whom ported huge amounts of HOL
Light material to Isabelle/HOL).
Two things set my eorts apart from Harrison’s: rst, I aimed to provide structured Isar

proofs that are (hopefully) more human-readable than the HOL Light tactic scripts. Second,
Harrison often sought out more elementary versions of the proofs to reduce the amount of
material required to be formalised. I, on the other hand, tried to develop all the library material
beyond the minimum that was required for a particular end result. This can be seen e.g. with
the Riemann Z and the Dirichlet 𝐿 functions. Harrison only dened Z (𝑠) for Re(𝑠) > 0 and 𝐿(𝑠)
only at 𝑠 = 1, whereas I dened them on the full complex plane and proved many additional
advanced theorems about them.
This approach of building a large library of analytic number theory (and of course much

infrastructure below it, most of it having been built by other people) turned proving the PNT
and Dirichlet’s Theorem from a big and daunting project into something that can be done
in a few days without too much eort. Many of the proofs are also much shorter and more
‘high-level’ (most notably the proof of the non-vanishing of Z (𝑠) for Re(𝑠) ≥ 1).

8.3 Further Work

Some time after the submission of the article, Rodrigo Raya (an undergraduate exchange
student at the time) formalised Chapter 8 from Apostol’s book mostly by himself under my
supervision [83]. This chapter contains much material, including:

• periodic arithmetic functions and their nite Fourier expansions
• (generalised) Ramanujan sums
• Gauss sums and separable Dirichlet characters
• induced character moduli and primitive characters
• the Pólya–Vinogradov inequality

Additionally, I have since also formalised some more notable and non-trivial facts about
the Riemann Z function:

• its Laurent series expansion in terms of the Stieltjes constants [34]
• the Hadjicostas–Chapman formula involving Γ and Z [21, 34, 51]
• Beukers’ analytic version of Apéry’s proof that Z (3) is irrational [35]

None of these had been formalised before. All of these together took only about a week of
casual work, which is surely a credit to how mature Isabelle’s tools and libraries are for math-
ematical formalisation projects in this area. The proof of the irrationality of Z (3) in particular
was completed in about 2 or 3 days despite containing some rather nasty multidimensional
integrals (which are always very painful to do rigorously due to all the integrability side
conditions). In comparison, an earlier project to formalise the same theorem in Coq [23, 75]
(following a non-analytic route and without having the PNT available) was a much more
involved eort. However, the two projects are dicult to compare since the Coq formalisa-

45

8 Analytic Number Theory

tion concentrated more on developing specialised tools for creative telescoping and Apéry’s
theorem was more of an interesting application than the nal goal to them.

Themost interesting next step for this project would be to formalisemore tools frommodern
number theory: ttingly, Apostol’s book on analytic number theory is the rst part of a series
of two books, the second one being titled Modular Functions and Dirichlet Series in Number
Theory [4]. This covers elliptic functions, modular functions, and modular forms. Formalising
these would certainly be a natural, albeit ambitious next step. The related subject of elliptic
curves, with their many applications both in abstract and computational number theory and
in cryptography, would also be a very rewarding target for a formalisation project.

46

9 Concluding Remarks

“ I rarely end up where I was intending to go,
but often I end up somewhere I needed to be.

— Dirk Gently in The Long Dark Tea-Time of the Soul by Douglas Adams (1988)”
The four publications reproduced in this dissertation only show a part of the entire picture. I
would therefore like to use this last section to mention some related work that I have done but
that has not made its way into a published article, or where that article did not quite t the
overall theme of this dissertation. Overall, I have written 49 entries in the Archive of Formal
Proofs (some of them with collaborators), with a total of roughly 87,000 lines. Additionally, I
have contributed about 24,000 lines of various material to the Isabelle distribution. I also took
care of 18 of the 100 theorems on Freek Wiedijk’s ‘Top 100 Theorems to Formalise’ list1 in
Isabelle (most of the remaining ones have been formalised in Isabelle by others already).

Apart from the material mentioned in Chapter 4, one very signicant part of my work was
the formalisation and analysis of classic textbook algorithms and data structures, especially
probabilistic ones. Notable examples are:

• the Fisher–Yates shue [27]
• Treaps and Skip Lists (joint work with Max W. Haslbeck and Tobias Nipkow) [41, 60]
• randomised and deterministic QuickSort [38]
• median-of-medians selection [37]
• the Θ(𝑛 log𝑛) lower bound for comparison-based sorting algorithms [28]

The diculty here was usually not in sophisticated mathematics but rather in how to best
express the pen-and-paper arguments in the system; however, some mathematical results are
required, e.g. Stirling’s formula for 𝑛! or the asymptotic growth of the harmonic numbers.
I also did some work on social choice theory research in collaboration with Felix Brandt

and his group [16]. They used SMT solving to solve an open conjecture in randomised social
choice, but referees were sceptical of this kind of proof. In particular, the SMT instance that
was fed to the solver was generated by an unveried Java program, and the history of computer
proofs (as briey mentioned in the introduction) shows that such programs do often contain
bugs. I therefore formalised the entire proof and the background theory that it relies on in
Isabelle/HOL with the assistance of Brandt et al. It seems to me that this may well be a good
way of increasing the trustworthiness of computer proofs such as these in general.

1https://www.cs.ru.nl/~freek/100/

47

https://www.cs.ru.nl/~freek/100/

9 Concluding Remarks

Then, of course, there are numerous smaller things – too numerous and too small to men-
tion them all.

Therefore, to conclude, I would like to turn to something that is perhaps more interesting to
the reader: a few lessons and thoughts that I gathered during these six-ish years of formalising
mathematics. The formalisation of mathematics has certainly come a long way since the days
of Whitehead and Russell – I certainly doubt they could have imagined a formal proof of the
Prime Number Theorem after their ordeal with even the most basic of mathematics in the
Principia. However, it is still the case that formalising mathematics with a proof assistant is
much more tedious and lengthy than on paper. I like to call this The Curse of de Bruijn, as de
Bruijn noticed empirically that translating even ‘very meticulous ordinary mathematics’ into
a formal proof in Automath resulted in a large constant-factor blowup, the constant of which
has since been known as the de Bruijn factor (now also in systems other than Automath).
But why is this so? One of the many reasons – but a signicant one – is that much of

the work in an ‘ordinary’ pen-and-paper proof is, in some sense, externalised. First, it is
externalised to previous mathematicians: a mathematician can, in principle, use any widely
accepted theorem proven by any other person, even if they do not understand the proof.
Certainly no one will require them to redo the entire proof by themselves before using it. The
user of a proof assistant, however, will nd that for any given concept or statement from the
mathematical literature, there is a high likelihood that it has not been formalised yet – or
perhaps it has, but not in their system. This highlights the importance of good libraries and
better interaction between systems. The latter is not really my area of expertise, but I have it
on good authority that people are working on such things at this moment, so perhaps I can
focus on the former.
Second, work is often externalised to the reader. This already begins with notation: pen-

and-paper mathematics often uses highly ambiguous notation and relies on context and the
reader’s intelligence to gure out what is actually meant. Furthermore, uninteresting side
conditions (such as non-zeroness of a factor being cancelled) are routintely omitted in the
presentation; sometimes even large chunks of a proof are omitted with the justication that
the reader should readily be able to reconstruct them themselves based on the remaining parts.
Some of this is surely beyond hope for automation in the foreseeable future, but there are also
many small-scale examples of this. Many facts are obvious to a human due to domain-specic
knowledge, but theorem provers typically have no built-in support for them, requiring input
from the human. Examples of this are:

•
√
16 and

√
12 can readily be rewritten to 4 and 3

√
2, respectively

• 𝑥2−2𝑥−2 has the two real solutions 1±√3 by the quadratic formula taught in secondary
school

• how to take a derivative
• how to expand a rational function into partial fractions
• 𝑛 log𝑛 ∈ 𝑜 (𝑛1.5) since one factor of 𝑛 can be cancelled and the remaining log𝑛 is eclipsed
by the 𝑛0.5

• 𝑥−4(1 − 𝑥2/2 − cos(𝑥/(1 − 𝑥2))) tends to 23
24 for 𝑥 → 0 by Taylor expansion

48

In my opinion, there is a great shortage of such special-purpose mathematical automation
in theorem provers, and this is another issue that I would like to tackle. I believe that with
real_asymp et al., I have at least made a valiant eort to begin such an undertaking.

On that note, I would like to end with what I intend to do now, and what I would like the
rest of the theorem proving community (and the Isabelle community in particular) to do: Have
fun! Formalise more mathematics! Build better tools! And, to adapt a quote by David Hilbert:

From the paradise that Whitehead and Russell have created for us,
no one shall be able to expel us!

49

Bibliography

[1] R. Aeldt, C. Cohen and D. Rouhling. ‘Formalization Techniques for Asymptotic Reas-
oning in Classical Analysis’. In: Journal of Formalized Reasoning 11.1 (2018), pp. 43–76.
doi: 10.6092/issn.1972-5787/8124.

[2] M. Akra and L. Bazzi. ‘On the Solution of Linear Recurrence Equations’. In: Computa-
tional Optimization and Applications 10.2 (1998), pp. 195–210. issn: 0926-6003. doi:
10.1023/A:1018373005182.

[3] T. M. Apostol. Introduction to analytic number theory. Undergraduate Texts in Math-
ematics. Springer-Verlag, 1976. isbn: 978-0-387-90163-3. doi: 10.1007/978-1-
4757-5579-4.

[4] T. M. Apostol.Modular Functions and Dirichlet Series in Number Theory. Vol. 41. Gradu-
ate Texts in Mathematics. Springer-Verlag, 1990, p. 207. isbn: 978-0-387-97127-8. doi:
10.1007/978-1-4612-0999-7.

[5] A. Asperti and W. Ricciotti. ‘A proof of Bertrand’s postulate’. In: Journal of Formalized
Reasoning 5.1 (2012), pp. 37–57. issn: 1972-5787. doi: 10.6092/issn.1972-
5787/3406.

[6] J. Avigad and K. Donnelly. ‘A Decision Procedure for Linear “Big O” Equations’. In:
Journal of Automated Reasoning 38.4 (2007), pp. 353–373. doi: 10.1007/s10817-
007-9066-1.

[7] J. Avigad et al. ‘A Formally Veried Proof of the Prime Number Theorem’. In: ACM
Trans. Comput. Logic 9.1 (Dec. 2007). issn: 1529-3785. doi: 10.1145/1297658.
1297660.

[8] R. Bagnara, A. Zaccagnini and T. Zolo. The Automatic Solution of Recurrence Relations.
I. Linear Recurrences of Finite Order with Constant Coecients. Quaderno 334. Dipar-
timento di Matematica, Università di Parma, Italy, 2003. url: http://www.cs.
unipr.it/Publications.

[9] L. Bazzi and S. K. Mitter. ‘The Solution of Linear Probabilistic Recurrence Relations’.
In: Algorithmica 36.1 (2003), pp. 41–57. doi: 10.1007/s00453-002-1003-4.

[10] J. L. Bentley, D. Haken and J. B. Saxe. ‘A general method for solving divide-and-conquer
recurrences’. In: ACM SIGACT News 12.3 (Sept. 1980), pp. 36–44. doi: 10.1145/
1008861.1008865.

[11] J. Biendarra andM. Eberl. ‘Bertrand’s postulate’. In:Archive of Formal Proofs (Jan. 2017).
http://isa-afp.org/entries/Bertrands_Postulate.html, Formal
proof development. issn: 2150-914x.

51

https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.1023/A:1018373005182
https://doi.org/10.1007/978-1-4757-5579-4
https://doi.org/10.1007/978-1-4757-5579-4
https://doi.org/10.1007/978-1-4612-0999-7
https://doi.org/10.6092/issn.1972-5787/3406
https://doi.org/10.6092/issn.1972-5787/3406
https://doi.org/10.1007/s10817-007-9066-1
https://doi.org/10.1007/s10817-007-9066-1
https://doi.org/10.1145/1297658.1297660
https://doi.org/10.1145/1297658.1297660
http://www.cs.unipr.it/Publications
http://www.cs.unipr.it/Publications
https://doi.org/10.1007/s00453-002-1003-4
https://doi.org/10.1145/1008861.1008865
https://doi.org/10.1145/1008861.1008865
http://isa-afp.org/entries/Bertrands_Postulate.html

Bibliography

[12] J. Biendarra et al. Dening (Co)datatypes and Primitively (Co)recursive Functions in
Isabelle/HOL. 2017. url: https://isabelle.in.tum.de/dist/doc/
datatypes.pdf.

[13] J. Biendarra et al. ‘Foundational (Co)datatypes and (Co)recursion for Higher-Order
Logic’. In: Frontiers of Combining Systems – 11th International Symposium, FroCoS 2017.
Ed. by C. Dixon andM. Finger. Vol. 10483. Lecture Notes in Computer Science. Springer,
2017, pp. 3–21. doi: 10.1007/978-3-319-66167-4_1.

[14] R. Boyer, M. Kaufmann and J. Moore. ‘The Boyer–Moore theorem prover and its in-
teractive enhancement’. In: Computers & Mathematics with Applications 29.2 (1995),
pp. 27–62. issn: 0898-1221. doi: 10.1016/0898-1221(94)00215-7.

[15] R. S. Boyer and J. S. Moore. A computational logic. ACM monograph series. Academic
Press, 1979. isbn: 9780121229504.

[16] F. Brandl et al. ‘Proving the Incompatibility of Eciency and Strategyproofness via
SMT Solving’. In: Journal of the ACM 65.2 (Jan. 2018), 6:1–6:28. issn: 0004-5411. doi:
10.1145/3125642.

[17] L. Bulwahn. ‘The New Quickcheck for Isabelle’. In: Certied Programs and Proofs:
Second International Conference, CPP 2012. Ed. by C. Hawblitzel and D. Miller. Springer,
2012, pp. 92–108. isbn: 978-3-642-35308-6. doi: 10.1007/978-3-642-35308-
6_10.

[18] L. Bulwahn and M. Eberl. ‘Bernoulli Numbers’. In: Archive of Formal Proofs (Jan. 2017).
http://isa-afp.org/entries/Bernoulli.html, Formal proof develop-
ment. issn: 2150-914x.

[19] M. Carneiro. Arithmetic in Metamath, Case Study: Bertrand’s Postulate. 2015. arXiv:
1503.02349.

[20] M. Carneiro. ‘Formalization of the prime number theorem and Dirichlet’s theorem’.
In: 9th Conference on Intelligent Computer Mathematics (CICM 2016). 2016, pp. 10–13.
url: http://ceur-ws.org/Vol-1785/F3.pdf.

[21] R. Chapman. A proof of Hadjicostas’s conjecture. 2004. arXiv: math/0405478.
[22] J. Chen. An Implementation of Homotopy Type Theory in Isabelle/Pure. 2019. arXiv:

1911.00399.
[23] F. Chyzak et al. ‘A Computer-Algebra-Based Formal Proof of the Irrationality of Z (3)’.

In: Interactive Theorem Proving – 5th International Conference, ITP 2014. Ed. by G. Klein
and R. Gamboa. Vol. 8558. Lecture Notes in Computer Science. Springer, 2014, pp. 160–
176. doi: 10.1007/978-3-319-08970-6_11.

[24] The Coq Development Team. The Coq Proof Assistant, version 8.10.0. Oct. 2019. doi:
10.5281/zenodo.3476303.

[25] T. H. Cormen et al. Introduction to Algorithms. 2nd. McGraw-Hill Higher Education,
2001. isbn: 0070131511.

52

https://isabelle.in.tum.de/dist/doc/datatypes.pdf
https://isabelle.in.tum.de/dist/doc/datatypes.pdf
https://doi.org/10.1007/978-3-319-66167-4_1
https://doi.org/10.1016/0898-1221(94)00215-7
https://doi.org/10.1145/3125642
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/978-3-642-35308-6_10
http://isa-afp.org/entries/Bernoulli.html
https://arxiv.org/abs/1503.02349
http://ceur-ws.org/Vol-1785/F3.pdf
https://arxiv.org/abs/math/0405478
https://arxiv.org/abs/1911.00399
https://doi.org/10.1007/978-3-319-08970-6_11
https://doi.org/10.5281/zenodo.3476303

Bibliography

[26] M. Eberl. ‘Catalan Numbers’. In: Archive of Formal Proofs (June 2016). http://isa-
afp.org/entries/Catalan_Numbers.html, Formal proof development.
issn: 2150-914x.

[27] M. Eberl. ‘Fisher–Yates shue’. In: Archive of Formal Proofs (Sept. 2016). http://
isa-afp.org/entries/Fisher_Yates.html, Formal proof development.
issn: 2150-914x.

[28] M. Eberl. ‘Lower bound on comparison-based sorting algorithms’. In:Archive of Formal
Proofs (Mar. 2017). http://isa-afp.org/entries/Comparison_Sort_
Lower_Bound.html, Formal proof development. issn: 2150-914x.

[29] M. Eberl. ‘Nine Chapters of Analytic Number Theory in Isabelle/HOL’. In: Interactive
Theorem Proving. Leibniz International Proceedings in Informatics, 2019. doi: 10.
4230/LIPIcs.ITP.2019.16.

[30] M. Eberl. ‘Proving Divide and Conquer Complexities in Isabelle/HOL’. In: Journal of
Automated Reasoning 58.4 (Apr. 2017), pp. 483–508. issn: 1573-0670. doi: 10.1007/
s10817-016-9378-0.

[31] M. Eberl. ‘Stirling’s formula’. In: Archive of Formal Proofs (Sept. 2016). http://isa-
afp.org/entries/Stirling_Formula.html, Formal proof development.
issn: 2150-914x.

[32] M. Eberl. ‘The Error Function’. In: Archive of Formal Proofs (Feb. 2018). http://isa-
afp.org/entries/Error_ Function.html, Formal proof development.
issn: 2150-914x.

[33] M. Eberl. ‘The Euler–MacLaurin Formula’. In: Archive of Formal Proofs (Mar. 2017).
http://isa-afp.org/entries/Euler_MacLaurin.html, Formal proof
development. issn: 2150-914x.

[34] M. Eberl. ‘The Hurwitz and Riemann Z Functions’. In: Archive of Formal Proofs (Oct.
2017). http://isa-afp.org/entries/Zeta_Function.html, Formal
proof development. issn: 2150-914x.

[35] M. Eberl. ‘The Irrationality of Z (3)’. In: Archive of Formal Proofs (Dec. 2019). http:
//isa-afp.org/entries/Zeta_3_Irrational.html, Formal proof
development. issn: 2150-914x.

[36] M. Eberl. ‘The Lambert𝑊 Function on the Reals’. In: Archive of Formal Proofs (Apr.
2020). http://isa-afp.org/entries/Lambert_W.html, Formal proof
development. issn: 2150-914x.

[37] M. Eberl. ‘The Median-of-Medians Selection Algorithm’. In: Archive of Formal Proofs
(Dec. 2017). http://isa- afp.org/entries/Median_Of_Medians_
Selection.html, Formal proof development. issn: 2150-914x.

[38] M. Eberl. ‘The number of comparisons in QuickSort’. In: Archive of Formal Proofs (Mar.
2017). http://isa-afp.org/entries/Quick_Sort_Cost.html, Formal
proof development. issn: 2150-914x.

53

http://isa-afp.org/entries/Catalan_Numbers.html
http://isa-afp.org/entries/Catalan_Numbers.html
http://isa-afp.org/entries/Fisher_Yates.html
http://isa-afp.org/entries/Fisher_Yates.html
http://isa-afp.org/entries/Comparison_Sort_Lower_Bound.html
http://isa-afp.org/entries/Comparison_Sort_Lower_Bound.html
https://doi.org/10.4230/LIPIcs.ITP.2019.16
https://doi.org/10.4230/LIPIcs.ITP.2019.16
https://doi.org/10.1007/s10817-016-9378-0
https://doi.org/10.1007/s10817-016-9378-0
http://isa-afp.org/entries/Stirling_Formula.html
http://isa-afp.org/entries/Stirling_Formula.html
http://isa-afp.org/entries/Error_Function.html
http://isa-afp.org/entries/Error_Function.html
http://isa-afp.org/entries/Euler_MacLaurin.html
http://isa-afp.org/entries/Zeta_Function.html
http://isa-afp.org/entries/Zeta_3_Irrational.html
http://isa-afp.org/entries/Zeta_3_Irrational.html
http://isa-afp.org/entries/Lambert_W.html
http://isa-afp.org/entries/Median_Of_Medians_Selection.html
http://isa-afp.org/entries/Median_Of_Medians_Selection.html
http://isa-afp.org/entries/Quick_Sort_Cost.html

Bibliography

[39] M. Eberl. ‘Veried Real Asymptotics in Isabelle/HOL’. In: International Symposium on
Symbolic and Algebraic Computation. ISSAC ’19. ACM, 2019. isbn: 978-1-4503-6084-5.
doi: 10.1145/3326229.3326240.

[40] M. Eberl. ‘Veried Solving and Asymptotics of Linear Recurrences’. In: 8th ACM SIG-
PLAN International Conference on Certied Programs and Proofs. CPP 2019. ACM, 2019,
pp. 27–37. isbn: 978-1-4503-6222-1. doi: 10.1145/3293880.3294090.

[41] M. Eberl, M. W. Haslbeck and T. Nipkow. ‘Veried Analysis of Random Binary Tree
Structures’. In: Interactive Theorem Proving – 9th International Conference, ITP 2018.
Ed. by J. Avigad and A. Mahboubi. Vol. 10895. Lecture Notes in Computer Science.
Springer, 2018, pp. 196–214. doi: 10.1007/978-3-319-94821-8_12.

[42] P. Flajolet and R. Sedgewick. Analytic Combinatorics. 1st ed. Cambridge University
Press, 2009. isbn: 9780521898065.

[43] P. Flajolet, P. Zimmermann and B. Salvy. Lambda-Upsilon-Omega: The 1989 cookbook.
Research Report RR-1073. INRIA, 1989. url: https://hal.inria.fr/inria-
00075486.

[44] G. Gonthier. ‘The Four Colour Theorem: Engineering of a Formal Proof’. In: Computer
Mathematics, 8th Asian Symposium, ASCM 2007. Revised and Invited Papers. Ed. by
D. Kapur. Vol. 5081. Lecture Notes in Computer Science. Springer, 2007, p. 333. doi:
10.1007/978-3-540-87827-8_28.

[45] G. Gonthier et al. ‘AMachine-Checked Proof of the OddOrder Theorem’. In: Interactive
Theorem Proving – 4th International Conference, ITP 2013. Ed. by S. Blazy, C. Paulin-
Mohring and D. Pichardie. Vol. 7998. Lecture Notes in Computer Science. Springer,
2013, pp. 163–179. doi: 10.1007/978-3-642-39634-2_14.

[46] M. J. C. Gordon. ‘Introduction to the HOL System’. In: 1991 International Workshop
on the HOL Theorem Proving System and its Applications. Ed. by M. Archer et al. IEEE
Computer Society, 1991, pp. 2–3.

[47] M. J. C. Gordon, R. Milner and C. P. Wadsworth. Edinburgh LCF. Vol. 78. Lecture Notes
in Computer Science. Springer, 1979. isbn: 3-540-09724-4. doi: 10.1007/3-540-
09724-4.

[48] R. L. Graham, D. E. Knuth and O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science. 2nd. Addison–Wesley, 1994. isbn: 0201558025.

[49] R. P. Grimaldi. Discrete and Combinatorial Mathematics: An Applied Introduction. Pear-
son Addison Wesley, 2004. isbn: 9780201726343.

[50] D. Gruntz. ‘On Computing Limits in a Symbolic Manipulation System’. PhD thesis.
ETH Zürich, 1996. doi: 10.3929/ethz-a-001631582.

[51] P. Hadjicostas. A conjecture-generalization of Sondow’s formula. 2004. arXiv: math/
0405423.

54

https://doi.org/10.1145/3326229.3326240
https://doi.org/10.1145/3293880.3294090
https://doi.org/10.1007/978-3-319-94821-8_12
https://hal.inria.fr/inria-00075486
https://hal.inria.fr/inria-00075486
https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.3929/ethz-a-001631582
https://arxiv.org/abs/math/0405423
https://arxiv.org/abs/math/0405423

Bibliography

[52] F. Haftmann. ‘Code Generation from Specications in Higher Order Logic’. PhD thesis.
Technische Universität München, 2009. url: http://nbn-resolving.de/
urn/resolver.pl?urn:nbn:de:bvb:91-diss-20091208-886023-1-
1.

[53] F. Haftmann and T. Nipkow. ‘Code Generation via Higher-Order Rewrite Systems’. In:
Functional and Logic Programming, 10th International Symposium, FLOPS 2010. Ed. by
M. Blume, N. Kobayashi and G. Vidal. Vol. 6009. Lecture Notes in Computer Science.
Springer, 2010, pp. 103–117. doi: 10.1007/978-3-642-12251-4_9.

[54] T. C. Hales. ‘The Jordan Curve Theorem, Formally and Informally’. In: The American
Mathematical Monthly 114.10 (2007), pp. 882–894. issn: 00029890, 19300972. url:
http://www.jstor.org/stable/27642361.

[55] T. C. Hales et al. A formal proof of the Kepler conjecture. 2015. arXiv: 1501.02155.
[56] J. M. Han and F. van Doorn. ‘A formal proof of the independence of the continuum

hypothesis’. In: 9th ACM SIGPLAN International Conference on Certied Programs and
Proofs, CPP 2020. Ed. by J. Blanchette and C. Hritcu. ACM, 2020, pp. 353–366. doi:
10.1145/3372885.3373826.

[57] J. Harrison. ‘A formalized proof of Dirichlet’s theorem on primes in arithmetic pro-
gression’. In: Journal of Formalized Reasoning 2.1 (2009), pp. 63–83. doi: 10.6092/
issn.1972-5787/1558.

[58] J. Harrison. ‘Formalizing an analytic proof of the prime number theorem (Dedicated to
Mike Gordon on the occasion of his 60th birthday)’. In: Journal of Automated Reasoning
43.3 (Oct. 2009), pp. 243–261. issn: 1573-0670. doi: 10.1007/s10817- 009-
9145-6.

[59] J. Harrison. Theorem proving with the real numbers. CPHC/BCS distinguished disserta-
tions. Springer, 1998. isbn: 978-3-540-76256-0.

[60] M.W.Haslbeck andM. Eberl. ‘Skip Lists’. In:Archive of Formal Proofs (Jan. 2020).http:
//isa-afp.org/entries/Skip_Lists.html, Formal proof development.
issn: 2150-914x.

[61] M. J. H. Heule, O. Kullmann and V. W. Marek. ‘Solving and Verifying the Boolean
Pythagorean Triples Problem via Cube-and-Conquer’. In: Theory and Applications of
Satisability Testing – SAT 2016. Springer, 2016, pp. 228–245. doi: 10.1007/978-
3-319-40970-2_15.

[62] J. van der Hoeven. Transseries and real dierential algebra. Vol. 1888. Lecture Notes in
Mathematics. Springer-Verlag, 2006.

[63] J. Hölzl. ‘Proving Inequalities over Reals with Computation in Isabelle/HOL’. In: ACM
SIGSAM 2009 International Workshop on Programming Languages for Mechanized Math-
ematics Systems (PLMMS’09). Ed. by G. D. Reis and L. Théry. Aug. 2009, pp. 38–45.

55

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20091208-886023-1-1
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20091208-886023-1-1
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20091208-886023-1-1
https://doi.org/10.1007/978-3-642-12251-4_9
http://www.jstor.org/stable/27642361
https://arxiv.org/abs/1501.02155
https://doi.org/10.1145/3372885.3373826
https://doi.org/10.6092/issn.1972-5787/1558
https://doi.org/10.6092/issn.1972-5787/1558
https://doi.org/10.1007/s10817-009-9145-6
https://doi.org/10.1007/s10817-009-9145-6
http://isa-afp.org/entries/Skip_Lists.html
http://isa-afp.org/entries/Skip_Lists.html
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15

Bibliography

[64] J. Hölzl, F. Immler and B. Human. ‘Type Classes and Filters for Mathematical Analysis
in Isabelle/HOL’. In: Interactive Theorem Proving – 4th International Conference, ITP
2013. Ed. by S. Blazy, C. Paulin-Mohring and D. Pichardie. Vol. 7998. Lecture Notes
in Computer Science. Springer, 2013, pp. 279–294. doi: 10.1007/978-3-642-
39634-2_21.

[65] F. Immler. ‘A Veried ODE Solver and the Lorenz Attractor’. In: Journal of Automated
Reasoning 61.1-4 (2018), pp. 73–111. doi: 10.1007/s10817-017-9448-y.

[66] F. Immler, J. Rädle and M. Wenzel. ‘Virtualization of HOL4 in Isabelle’. In: 10th Interna-
tional Conference on Interactive Theorem Proving, ITP 2019. Ed. by J. Harrison, J. O’Leary
and A. Tolmach. Vol. 141. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019, 21:1–21:18. doi: 10.4230/LIPIcs.ITP.2019.21.

[67] R. M. Karp. ‘Probabilistic Recurrence Relations’. In: Journal of the ACM 41.6 (1994),
pp. 1136–1150. doi: 10.1145/195613.195632.

[68] D. E. Knuth. ‘Big Omicron and Big Omega and Big Theta’. In: SIGACT News 8.2 (Apr.
1976), pp. 18–24. issn: 0163-5700. doi: 10.1145/1008328.1008329.

[69] A. Krauss. ‘Dening Recursive Functions in Isabelle/HOL’. 2010. url: https://
isabelle.in.tum.de/doc/functions.pdf.

[70] A. Krauss. ‘Partial and Nested Recursive Function Denitions in Higher-order Logic’.
In: Journal of Automated Reasoning 44.4 (2010), pp. 303–336. doi:10.1007/s10817-
009-9157-2.

[71] E. Landau. Grundlagen der Analysis. Akademische Verlagsgesellschaft, 1930.
[72] T. Leighton. ‘Notes on Better Master Theorems for Divide-and-Conquer Recurrences

(MIT lecture notes)’. Lecture notes, MIT. 1996. url: https://courses.csail.
mit.edu/6.046/spring04/handouts/akrabazzi.pdf.

[73] W. Li and L. C. Paulson. ‘Evaluating Winding Numbers and Counting Complex Roots
Through Cauchy Indices in Isabelle/HOL’. In: Journal of Automated Reasoning 64.2
(2020), pp. 331–360. doi: 10.1007/s10817-019-09521-3.

[74] F. Luccio and L. Pagli. ‘On the Height of Height-Balanced Trees’. In: IEEE Transactions
on Computers 25.1 (1976), pp. 87–91. doi: 10.1109/TC.1976.5009208.

[75] A. Mahboubi and T. Sibut-Pinote.A Formal Proof of the Irrationality of Z (3). 2019. arXiv:
1912.06611.

[76] D. Matthews. The Poly/ML implementation of Standard ML. url: https://www.
polyml.org/.

[77] P. McCorduck. Machines who think: a personal inquiry into the history and prospects of
articial intelligence. 2nd ed. A K Peters/CRC Press, 2004. isbn: 9781568812052.

[78] W. McCune. ‘Solution of the Robbins Problem’. In: Journal of Automated Reasoning
19.3 (1997), pp. 263–276. doi: 10.1023/A:1005843212881.

56

https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1007/s10817-017-9448-y
https://doi.org/10.4230/LIPIcs.ITP.2019.21
https://doi.org/10.1145/195613.195632
https://doi.org/10.1145/1008328.1008329
https://isabelle.in.tum.de/doc/functions.pdf
https://isabelle.in.tum.de/doc/functions.pdf
https://doi.org/10.1007/s10817-009-9157-2
https://doi.org/10.1007/s10817-009-9157-2
https://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
https://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
https://doi.org/10.1007/s10817-019-09521-3
https://doi.org/10.1109/TC.1976.5009208
https://arxiv.org/abs/1912.06611
https://www.polyml.org/
https://www.polyml.org/
https://doi.org/10.1023/A:1005843212881

Bibliography

[79] A. Naumowicz and A. Kornilowicz. ‘A Brief Overview of Mizar’. In: Theorem Proving
in Higher Order Logics, 22nd International Conference, TPHOLs 2009. Ed. by S. Berghofer
et al. Vol. 5674. Lecture Notes in Computer Science. Springer, 2009, pp. 67–72. doi:
10.1007/978-3-642-03359-9_5.

[80] R. Nederpelt, J. Geuvers and R. de Vrijer. Selected Papers on Automath. Studies in Logic
and the Foundations of Mathematics. Elsevier Science, 1994. isbn: 9780080887180.

[81] T. Nipkow, L. C. Paulson and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-
Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer, 2002. isbn: 3-
540-43376-7. doi: 10.1007/3-540-45949-9.

[82] M. Rau and T. Nipkow. ‘Closest Pair of Points Algorithms’. In: Archive of Formal Proofs
(Jan. 2020). http://isa-afp.org/entries/Closest_Pair_Points.
html, Formal proof development. issn: 2150-914x.

[83] R. Raya and M. Eberl. ‘Gauss Sums and the Pólya–Vinogradov Inequality’. In: Archive
of Formal Proofs (Dec. 2019). http://isa-afp.org/entries/Gauss_Sums.
html, Formal proof development. issn: 2150-914x.

[84] M. Riccardi. ‘Pocklington’s Theorem and Bertrand’s Postulate’. In: Formalized Math-
ematics 14 (Jan. 2006), pp. 47–52. doi: 10.2478/v10037-006-0007-y.

[85] D. Richardson. ‘Some Undecidable Problems Involving Elementary Functions of a Real
Variable’. In: The Journal of Symbolic Logic 33.4 (1968), pp. 514–520. issn: 00224812.
doi:10.2307/2271358. url:http://www.jstor.org/stable/2271358.

[86] D. Richardson. ‘The Elementary Constant Problem’. In: Papers from the International
Symposium on Symbolic and Algebraic Computation. ISSAC ’92. ACM, 1992, pp. 108–
116. isbn: 0897914899. doi: 10.1145/143242.143284.

[87] D. Richardson et al. ‘Asymptotic Expansions of exp-log Functions’. In: 1996 Inter-
national Symposium on Symbolic and Algebraic Computation. ISSAC ’96. ACM, 1996,
pp. 309–313. isbn: 0-89791-796-0. doi: 10.1145/236869.237089.

[88] D. Russino. ‘A Mechanical Proof of Quadratic Reciprocity’. In: Journal of Automated
Reasoning 8 (Feb. 1992), pp. 3–21. doi: 10.1007/BF00263446.

[89] B. Salvy and J. Shackell. ‘Measured limits and multiseries’. In: Journal of the London
Mathematical Society 82.3 (Oct. 2010), pp. 747–762. issn: 0024-6107. doi: 10.1112/
jlms/jdq057.

[90] J. R. Shackell. Symbolic Asymptotics. Vol. 12. Algorithms and Computation in Mathem-
atics. Springer, 2004. isbn: 3-540-21097-0.

[91] P. Singh. ‘The so-called Fibonacci numbers in ancient and medieval India’. In: Historia
Mathematica 12.3 (1985), pp. 229–244. issn: 0315-0860. doi: 10.1016/0315-
0860(85)90021-7.

[92] J. Tassarotti and R. Harper. ‘Veried Tail Bounds for Randomized Programs’. In: Inter-
active Theorem Proving – 9th International Conference, ITP 2018. Ed. by J. Avigad and A.
Mahboubi. Vol. 10895. Lecture Notes in Computer Science. Springer, 2018, pp. 560–578.
doi: 10.1007/978-3-319-94821-8_33.

57

https://doi.org/10.1007/978-3-642-03359-9_5
https://doi.org/10.1007/3-540-45949-9
http://isa-afp.org/entries/Closest_Pair_Points.html
http://isa-afp.org/entries/Closest_Pair_Points.html
http://isa-afp.org/entries/Gauss_Sums.html
http://isa-afp.org/entries/Gauss_Sums.html
https://doi.org/10.2478/v10037-006-0007-y
https://doi.org/10.2307/2271358
http://www.jstor.org/stable/2271358
https://doi.org/10.1145/143242.143284
https://doi.org/10.1145/236869.237089
https://doi.org/10.1007/BF00263446
https://doi.org/10.1112/jlms/jdq057
https://doi.org/10.1112/jlms/jdq057
https://doi.org/10.1016/0315-0860(85)90021-7
https://doi.org/10.1016/0315-0860(85)90021-7
https://doi.org/10.1007/978-3-319-94821-8_33

Bibliography

[93] L. Théry. ‘Proving Pearl: Knuth’s Algorithm for Prime Numbers’. In: Theorem Proving
in Higher Order Logics. Ed. by D. Basin and B. Wol. Springer, 2003, pp. 304–318. isbn:
978-3-540-45130-3. doi: 10.1007/10930755_20.

[94] R. Thiemann and A. Yamada. ‘Algebraic numbers in Isabelle/HOL’. In: Interactive
Theorem Proving: 7th International Conference, ITP 2016. Ed. by J. C. Blanchette and
S. Merz. Springer, 2016, pp. 391–408. doi: 10.1007/978-3-319-43144-4_24.

[95] R. Thiemann and A. Yamada. ‘Polynomial Factorization’. In: Archive of Formal Proofs
(Jan. 2016).http://isa-afp.org/entries/Polynomial_Factorization.
html, Formal proof development. issn: 2150-914x.

[96] L. van Benthem Jutting. ‘Checking Landau’s “Grundlagen” in the Automath system’.
PhD thesis. Technische Hogeschool Eindhoven, 1977. doi: 10.6100/IR23183.

[97] WaterlooMaple, Inc.Maple 2019. url:https://www.maplesoft.com/products/
maple/.

[98] M. Wenzel. ‘Isabelle/jEdit as IDE for Domain-specic Formal Languages and Informal
Text Documents’. In: Electronic Proceedings in Theoretical Computer Science 284 (Nov.
2018), pp. 71–84. issn: 2075-2180. doi: 10.4204/eptcs.284.6.

[99] M. Wenzel. The Isabelle/Isar Reference Manual. Part of the Isabelle distribution. url:
https://isabelle.in.tum.de/dist/doc/isar-ref.pdf.

[100] M. Wenzel. ‘Isabelle/Isar — a versatile environment for human-readable formal proof
documents’. PhD thesis. Technische Universität München, 2002. url: http://
nbn - resolving . de / urn / resolver . pl ? urn : nbn : de : bvb : 91 -
diss2002020117092.

[101] F. Wiedijk. The Seventeen Provers of the World, Foreword by Dana S. Scott. Vol. 3600.
Lecture Notes in Computer Science. Springer, 2006. isbn: 3-540-30704-4. doi: 10.
1007/11542384.

[102] Wolfram Research, Inc. Mathematica, version 12.0. url: https://www.wolfram.
com/mathematica.

[103] B. Zhan and M. P. L. Haslbeck. ‘Verifying Asymptotic Time Complexity of Imperative
Programs in Isabelle’. In: Automated Reasoning – 9th International Joint Conference,
IJCAR 2018. Ed. by D. Galmiche, S. Schulz and R. Sebastiani. Vol. 10900. Lecture Notes
in Computer Science. Springer, 2018, pp. 532–548. doi: 10.1007/978-3-319-
94205-6_35.

58

https://doi.org/10.1007/10930755_20
https://doi.org/10.1007/978-3-319-43144-4_24
http://isa-afp.org/entries/Polynomial_Factorization.html
http://isa-afp.org/entries/Polynomial_Factorization.html
https://doi.org/10.6100/IR23183
https://www.maplesoft.com/products/maple/
https://www.maplesoft.com/products/maple/
https://doi.org/10.4204/eptcs.284.6
https://isabelle.in.tum.de/dist/doc/isar-ref.pdf
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2002020117092
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2002020117092
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2002020117092
https://doi.org/10.1007/11542384
https://doi.org/10.1007/11542384
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://doi.org/10.1007/978-3-319-94205-6_35
https://doi.org/10.1007/978-3-319-94205-6_35

Appendix

59

A Semi-Automatic Real Asymptotics

This chapter was originally published as an article in the proceedings of a peer-reviewed
conference:

M. Eberl.
Veried Real Asymptotics in Isabelle/HOL.
In Proceedings of the International Symposium on Symbolic and Algebraic Computation.
ISSAC ’19, New York, NY, USA, 2019. ACM.
DOI: 10.1145/3326229.3326240.

I am the sole author of this article, thus all contributions are mine.

Synopsis: This work provides a mostly automatic proof method in Isabelle/HOL that can
handle various asymptotic properties of concrete real-valued functions built from standard
operations such as arithmetic, exponentials, logarithms, trigonometric functions, etc. Similarly
to the procedures used in computer algebra systems, it is based on Multiseries expansions (cf.
the work by Shackell et al. [87]).

On the following pages, the full article is reproduced in its published form in accordance to
the ACM author rights for reproduction in a dissertation. The ocial version in the ACM
Digital Library can be found under the DOI cited above.

61

http://dx.doi.org/10.1145/3326229.3326240

Verified Real Asymptotics in Isabelle/HOL
Manuel Eberl

Technical University of Munich
Garching b. München
manuel.eberl@tum.de

ABSTRACT
Interactive theorem provers (or proof assistants) are software with
which mathematical definitions and theorems can be formalised.
They assist the user in writing formal proofs and check the cor-
rectness of these proofs, typically down to the level of basic logical
inference steps. This provides a very high degree of assurance that
any proof accepted by them is actually sound. Theorem provers
contain varying amounts of tools for automation to assist the user,
but unlike computer algebra systems, their focus is not on efficient
automatic computation.

In this work, we focus on the particular problem of symbolically
determining and proving asymptotics of real-valued functions: lim-
its, ‘Big-O’ statements, and asymptotic expansions. The tool that is
presented here uses an approach based on multiseries expansions
and can handle functions built from basic arithmetic and standard
functions like exp, ln, sin, | · |, etc. as well as parameters. The pro-
cedure is efficient enough to handle big problems and it is fully
automatic in many cases.

CCS CONCEPTS
• Mathematics of computing → Mathematical software.

KEYWORDS
asymptotics; interactive theorem proving; proof assistant; Isabelle;
symbolic computation; real analysis
ACM Reference Format:
Manuel Eberl. 2019. Verified Real Asymptotics in Isabelle/HOL. In Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC ’19),
July 15–18, 2019, Beijing, China. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3326229.3326240

1 INTERACTIVE THEOREM PROVERS
An interactive theorem prover (or proof assistant) is a piece of soft-
ware designed to assist in the development of a formal proof. All
definitions and proof steps have to be made in a formal way and
proofs are checked by the computer – typically down to the level
of basic logical inference. Consequently, this involves much more
work than a paper proof, but also provides much more clarity and
a high assurance that the proofs are actually sound.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’19, July 15–18, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6084-5/19/07. . . $15.00
https://doi.org/10.1145/3326229.3326240

There are many different theorem provers; some popular ones
are Coq, Isabelle, HOL Light, HOL4, Lean, and Mizar. They differ
in their underlying logic and in the infrastructure they provide. In
this paper, we focus on Isabelle/HOL, which is the combination of
the generic Isabelle theorem prover with Higher-Order Logic.

Unlike computer algebra systems, theorem provers focus not
on providing a framework for computation designed to automatic-
ally return a result quickly, but on providing a consistent logical
infrastructure in which mathematical definitions and proofs can be
made with high assurance of correctness. Like many other systems,
Isabelle has a kernel, which is the only part of the system that can
produce theorems. This kernel provides only basic logical inference
rules (such as modus ponens or ∀-introduction/elimination) and a
mechanism for non-recursive definitions. Outside the kernel, many
additional tools exist, such as tactics to automate proofs (e. g. re-
writing, first-order logic, linear arithmetic) and more sophisticated
definitional mechanisms (e. g. for recursive functions, inductive
predicates, and algebraic datatypes). However, all these additional
tools need to go through the kernel to prove a theorem or define a
function. The intention behind this design is that:

(1) A user must not be able to accidentally introduce inconsist-
encies by defining e. g. f (x) = f (x) + 1.

(2) Bugs in proof automation or definitional tools (e. g. termina-
tion checkers for recursive definitions) must not compromise
the integrity of the entire system.

Formal proofs – even computer-assisted ones – are very verbose,
since every step of a proof has to be written down in much more
detail than in a pen-and-paper proof. Many steps that are elided in
paper proofs need to be written out explicitly. To make theorem
provers usable for the formalisation of non-trivial mathematics,
it is therefore crucial that they provide good proof automation to
reduce the burden on the user.

This work focuses on the particular problem of proving asymp-
totic properties of concrete real-valued functions such as that in
Figure 1. Computer algebra systems like Mathematica and Maple
are very good at solving these problems. They employ specialised
algorithms to compute asymptotic expansions for a wide variety of
functions efficiently and fully automatically. On the other hand, to
our knowledge, no theorem prover has anything comparable to this
so far. In this work, we attempt to integrate a procedure very much
like the one used by computer algebra systems into Isabelle/HOL
with the goal of providing a similarly effective and automatic ‘push-
button’ solution to prove limits and other asymptotic properties.

It is important to emphasise that, naturally, we did not invent any
of the underlyingmethods used in this work (such asmultiseries and
expansions of exp-log functions [8, 12]). The novel contribution
of our work is that we integrate these methods into a theorem
prover in a way that is effective and convenient to use, and that we
successfully use this for non-trivial mathematical developments.

Contributed Paper ISSAC ’19, July 15–18, 2019, Beijing, China

147

https://doi.org/10.1145/3326229.3326240
https://doi.org/10.1145/3326229.3326240
https://doi.org/10.1145/3326229.3326240

As of Isabelle 2018, the work described here can be found in the
HOL-Real_Asymp session, which is a part of the Isabelle distribution.

2 MOTIVATION
Proving limits in a theorem prover can be very tedious. Of course,
simple limits like those of exp(1/x) or 1 − 1

x + lnx for x →∞ can
be proven in an entirely syntax-directed way, which makes them
very easy to automate. Indeed, just passing the right theorems to
Isabelle’s general-purpose proof automation is enough to prove
these two examples:

lemma filterlim (λx . exp (1/x)) (nhds 1) at_top
by (force intro: tendsto_eq_intros real_tendsto_divide_at_top filterlim_ident)

lemma filterlim (λx . 1 − 1/x + ln x) at_top at_top
by (force intro: tendsto_diff filterlim_tendsto_add_at_top

real_tendsto_divide_at_top filterlim_ident ln_at_top)

Even for these simple examples, one can see that one has to
search for (or remember) many facts and pass them to the proof
method, which a user might expect the system to do for them.

Tomakematters worse, the above problemswere actually cherry-
picked: If one permutes the summands in the second example a bit,
the method does not work anymore, since many of the theorems
only exist in one form; e. g. the rule filterlim_tendsto_add_at_top
states that if f (x) −→ c and д(x) −→ ∞, then f (x) + д(x) −→
∞. However, there is no equivalent theorem for the situation of
д(x) + f (x) or f (x) − д(x), or when д(x) −→ −∞. When one has
one of these situations, one first has to rearrange terms in order for
the theorem to apply, which can become very tedious especially for
larger terms. Proving different forms of these theorems for every
possible situations would possibly improve this, but creating this
would require a lot of effort and duplication.

Moreover, in many interesting examples, the proofs are not en-
tirely syntax-directed. Consider the following examples:

lim
x→∞

x + 1
x − 1 lim

x→∞
x

(lnx)c lim
x→0

sin(tanx) − tan(sinx)
x7

These are easy to solve by hand:

• The first one can be rewritten to (1 + x−1)/(1 − x−1), for
which the syntax-directed method immediately gives us the
limit 1.
• The second one can be attacked by applying L’Hospital’s
rule again and again until we get C1x(lnx)C2 with C1 > 0
and C2 ≥ 0, which clearly goes to∞.
• The third one can be solved using Taylor expansions to find
that the limit is − 1

30 .

The drawback of the first two methods is that they typically require
a certain amount of creativity and that there is no clear-cut class of
problems on which they will work; the third method can become
very tedious and error-prone on paper. In Isabelle, all of these
methods are typically tedious, since ‘obvious’ steps need to be
made explicit:

• Rewriting limits often requires proving side conditions; e. g.
non-zeroness in the above example.

• L’Hospital’s rule requires proving several other (albeit usu-
ally easier) limits and derivatives. Also, there are many dif-
ferent cases and each one requires a different variant of the
rule to be used.
• Manual Taylor expansion-based proofs also require proving
many derivatives and asymptotic estimates.

As one of the more extreme examples of the limit problems that can
arise, consider Figure 1. This problem is part of Leighton’s proof of
the Akra–Bazzi theorem. The first formal proof of this statement
in Isabelle [3] was 700 lines long and required considerable effort.

The above examples should demonstrate vividly that in order to
do non-trivial mathematics involving asymptotic analysis in a the-
orem prover, better automation is needed. This state of affairs seems
particularly bizarre when compared to the capabilities of modern
computer algebra systems, which can typically solve problems like
the ones above fully automatically within fractions of a second.
The goal of this work is to bring Isabelle’s capabilities w. r. t. limit
computations and asymptotic analysis closer to that of a computer
algebra system – while still constructing a machine-checked proof.

3 ASYMPTOTICS IN ISABELLE/HOL
First, we must explain some notation concerning asymptotics in
Isabelle/HOL. Asymptotics in Isabelle are centred around filters [2].
For our purposes, a filter can be thought of as a kind of local neigh-
bourhood or approach: The neighbourhood of a real number (i. e.
all numbers that are sufficiently close to that number) is a filter,
and so are ∞ (all sufficiently large numbers) and −∞. There are
also filters for ±∞ (all numbers whose absolute value is sufficiently
large) and 0+ (all sufficiently small positive numbers).

What is convenient about filters for theorem proving is that they
compose in very natural ways and they can be used to uniformly ex-
press many different concepts related to topology, analysis, measure
theory, or asymptotics: properties that hold ‘eventually’ (‘for all val-
ues that are sufficiently . . . ’), limits, summable families, pointwise
and uniform continuity, derivatives, Landau symbols, etc.

For a detailed introduction to the way filters are used in Isabelle
and the precise definition, see the paper by Hölzl et al. [6]. For this
presentation, the notation listed in Table 1 will suffice. Similarly to
the Isabelle notation, we will use ∀∞x . P(x) from now on to denote
that P(x) holds for large enough x .

4 MULTISERIES
For the sake of simplicity, we only ever consider functions at the
neighbourhood of∞ and reduce all other cases to this. Therefore,
any ‘eventually’, limit, or ‘Big-O’ from now on is to be understood
for x →∞ unless otherwise indicated.

At the core of our method is the concept of a multiseries. This
is a representation of a Poincaré expansion of a given real-valued
function, where each summand in the expansion is a monomial of
the form cb1(x)e1 · . . . · bk (x)ek with c, e1, . . . , ek ∈ R. The bi are
basis functions; they are functions tending to ∞ and they are the
same for all summands. The list of the bi is assumed to be ordered
by descending growth in such a way that lnbi+1(x) ∈ o(lnbi (x))
for all i . The reason for this is that then bi+1(x)e ∈ o(bi (x)e ′) for
any e, e ′ ∈ R with e ′ > 0 so that we can easily compare two
monomials asymptotically by comparing their exponent vectors

2

Contributed Paper ISSAC ’19, July 15–18, 2019, Beijing, China

148

lim
x→∞

(
1 − 1

b log1+ε x

)p ©«
1 + 1

logε/2
(
bx + x log−1−ε x

) ª®®¬
−

(
1 + 1

logε/2 x

)
= 0+

for real-valued parameters b, p, ε with b ∈ (0; 1) and ε > 0

Figure 1: A limit-problem related to Leighton’s proof of the Akra–Bazzi theorem.

Notation Meaning

nhds c neighbourhood filter around c ∈ R
at_top neighbourhood of∞ in R
∀x in F . P(x) P(x) holds eventually at F , i. e. for all x that are sufficiently F

filterlim f F G f (x) x→G−−−−−→ F

f ∈ O [F](д) ∃c>0. ∀x in F . | f (x)| ≤ c |д(x)|
f ∈ o[F](д) ∀c>0. ∀x in F . | f (x)| ≤ c |д(x)|
f ∼[F] д f − д ∈ o[F](д)

f and д are real-valued functions; F and G are filters.
If the filter argument F for the Landau symbols is not given, it defaults to at_top.

Table 1: Common asymptotic notation in Isabelle.

lexicographically. We call such a list a well-formed basis. A typical
basis would be(

exp(x lnx), exp(x), x, lnx, ln lnx
)
.

Abstractly, a multiseries is a formal power series in k variables
standing for the basis functions, i. e. a function mapping exponent
tuples (e1, . . . , ek) ∈ Rk to coefficients in R. We write this suggest-
ively as ∑

Ce1, ...,ekb1(x)e1 . . .bk (x)ek .
The link between these formal objects and a concrete real func-

tion f (x) is made by demanding that the multiseries be a Poincaré
expansion of f (x), i. e. that approximating f (x) by the finite sum
of all the monomials with exponent vectors ≥lex ē for some fixed
(ē1, . . . , ēk) yields an error that is o(b1(x)ē1 . . .bk (x)ēk). Given a
multiseries expansion of a function, its limit can then be computed
by determining the leading monomial, i. e. the smallest exponent
vector (e1, . . . , ek) whose coefficient is non-zero.

A computationally convenient view of multiseries is the follow-
ing: By isolating the first basis element, we can view a multiseries as
a (univariate) formal series in b1(x) whose coefficients are multiser-
ies w. r. t. the k − 1 basis functions b2(x), . . . ,bk (x). This univariate
series can be represented as a (possibly infinite) list whose elements
are a pair of a coefficient (which is again a multiseries, but in k − 1
variables) and an exponent (which is just a real number). Iterating
this yields a kind of ‘nested infinite list’ structure with k levels.

The reason for this nested structure is the following: If one
were to view multiseries simply as linear sequences of summands,
cancellation can lead to an infinite number of zeros in the front
and therefore to non-termination when trying to find the leading
term. The nested list representation solves this problem because
we can discard infinitely many zeros at once: Each element of
the outermost list corresponds to a summand c(x)b1(x)e with a
multiseries expansion for c(x) in terms of b2(x), . . . ,bk (x) attached
to it. If c(x) is identically zero, we can discard the element and

proceed with the next one until we find a term such that c(x) is not
identically zero. We then proceed analogously with the multiseries
expansion of c(x) etc. We refer to this process as trimming the
representation of the multiseries.

When the distinction is necessary, we will write multiseries in
double square brackets to distinguish them from the functions of
which they are an expansion and separate the monomials with a
vertical bar, e. g. ⟦x | 1⟧(x ,ln) is a multiseries w. r. t. the basis (x, ln)
that corresponds to the formal sum 1 · x1 ln(x)0 + 1 · x0 ln(x)0. Sim-
ilarly, the notation ⟦cb(x)e | F ⟧b#bs indicates that the leading entry
in the list has coefficient ⟦c⟧bs and exponent e ∈ R and ⟦F ⟧b#bs is
the remainder of the series. Variables denoting multiseries are in
upper-case calligraphic font, e. g. F . We also write addition, multi-
plication, etc. on multiseries as ⊕, ⊙, etc. to distinguish them from
the operations on real numbers.

To obtain nice theoretical properties of these multiseries, further
restrictions must be placed on the support of this coefficient func-
tion (e. g. well-ordered or ‘grid-based’ [14]), but for our purposes,
such assumptions need not be modelled explicitly. Since all our
definitions work directly on the nested list representations, our
multiseries have well-ordered coefficient support by construction.
In fact, all the multiseries that our constructions yield will even
be grid-based, but we do not need to talk about these notions in
Isabelle/HOL explicitly to show the soundness of the approach;
they are only relevant for a discussion of completeness.

Although the actual implementation in Isabelle is different due
to lack of dependent types, we will, for the sake of this presentation,
pretend that there exists a type of multiseries mseries that takes a
list of basis function as its type parameter. Morally, we then have

[] mseries = R
(b # bs) mseries = (bs mseries × R) llist

where α llist (‘lazy list’) is the type of possibly infinitely long lists
with elements of type α and # denotes prepending a single basis

3

Contributed Paper ISSAC ’19, July 15–18, 2019, Beijing, China

149

function b to a list of functions bs. The llist type is a codatatype
defined using Isabelle’s codatatype package [1]. This allows us to
define and reason about ‘infinitely recursive’ functions on infinite
structures in an intuitive way. We make extensive use of this to
define operations on multiseries, to link these formal series to real
functions, and to prove correctness of the former w. r. t. the latter.

A technical subtlety that is not shown here is that every Multiser-
ies implicitly ‘knows’ what function it is supposed to be an expan-
sion of. For a Multiseries F , we denote this function as F (x). For
F to be well-formed, it needs to be a Poincaré expansion of F (x).

5 TRIMMING AND RECOGNISING ZERO
An important auxiliary operation on our multiseries representation
is the afore-mentioned trimming. We call a multiseries trimmed if
its leading monomial is non-zero. The process of trimming is to
discard terms at the beginning of the list until this is the case. The
difficulty here is that when considering a leading term of the form
⟦Cb(x)e⟧b#bs, we need to decide whether or not it is identically 0
and discard it if it is; if we fail to recognise this and try to trim C
instead, we may trim infinitely many zeros and never terminate.

Note, however, that the leading zeros can already contain some
information: if e. g. f (x) ∼ 0 · x2 + . . ., then we can immediately
see that f (x) ∈ O(x2). It is therefore sometimes sufficient to only
partially trim a series. However, if we want more precise asymptotic
information (in particular an asymptotic lower bound), we indeed
need to make sure that the expansion is fully trimmed first. We will
also see that some of the operations we will define on multiseries
only work if the series is already trimmed. Trimming will therefore
be an essential part in our expansion algorithm.

This leads us to the problem of recognising zeros, which is one
of the central problems in automated symbolic asymptotics. Given
some expression representing a real constant, how do we determine
whether or not it is zero? Depending on the class of expressions
considered, this problem ranges from difficult to undecidable [4].
For exp-log constants, it is known to be semi-decidable but the
theory behind the decision procedure is fairly complicated and out
of the scope of this work. [7]

We therefore chose a very simple approach: The algorithm uses
a modular zeroness oracle1 that receives an Isabelle term c of type
R as an input and either fails with an informative error message or
returns a theorem stating that c = 0, c ≥ 0, c > 0 etc. depending on
the exact configuration. A similar eventual-zeroness oracle receives
a term f of type R → R and either fails silently or returns the
theorem that f (x) is eventually zero.

The standard implementation of these oracles uses Isabelle’s sim-
plifier, which is one of Isabelle’s default proof methods. It is a simple
directed term rewriting engine with a large setup of rewrite rules
and some additional specialised procedures (e. g. for arithmetic).
Since most zeroness problems encountered in practice are trivial
(e. g. ‘1 + 2 · (1 + 0) = 0’), this works reasonably well. This oracle is
even able to handle parameters, but it sometimes reaches its limits
when larger arithmetic expressions or functions like

√
, exp, and

ln are involved. The user can load an optional additional oracle
based on interval arithmetic approximation [5] that can handle

1Note that the name ‘oracle’ does not mean that we blindly trust the oracle. It is still
required to return an Isabelle theorem.

many of these cases. Improving Isabelle’s automation for problems
such as these or adding more zeroness oracles is a worthwhile goal,
but certainly outside the scope of this work. If the oracle fails, the
users receive an error message indicating on which expression it
got stuck so that they can provide a manual proof of its sign and
re-run the proof method with this new knowledge.

It should be mentioned that the trimming algorithm sketched
here only terminates if the eventual-zeroness oracle never fails on a
provable result and that we do not encounter an all-zero expansion
of a non-zero function. The latter would be an instance where we
have some function f (x) that goes to 0 faster than can be measured
by the basis of its multiseries (e. g. exp(−x) with the basis (x)). It
is the responsibility of the expansion algorithm to ensure that this
does not happen. For the basic class of exp-log functions, this is
ensured since the expansion algorithm always produces convergent
expansions. When we add more functions (e. g. Γ), this is no longer
the case and the analysis becomes more complicated. Whether or
not the algorithm is still complete in such cases is not clear to us and
we consider this beyond the scope of this work since, in the context
of a proof method in an interactive theorem prover, completeness
is desirable but not absolutely necessary.

Neither of these issues make our procedure untrustworthy: non-
termination of the trimming will simply lead to non-termination of
the entire algorithm. If the algorithm does terminate, a full proof will
have been produced and has passed through the Isabelle kernel. The
afore-mentioned issues can therefore, by design, only compromise
the completeness of the algorithm, not its soundness.

6 OPERATIONS ON MULTISERIES
We will now give examples of how concrete operations on our
multiseries expansion can be implemented. The presentation is
fairly close to that in Isabelle but with simplified, type-theory in-
spired syntax. Due to space constraints, we only show a few basic
operations and refer to Shackell [12] for the remaining ones.

6.1 Basic Arithmetic
Constant functions, the identity function and powers thereof have
obvious multiseries representations. Also, given an abstract multi-
series (i. e. a mapping from exponent vectors to coefficients), it is
easy to see how they can be negated, added, and multiplied. As an
example, negation and addition can be defined like this:

(⊖) :: ∀bs :: basis. bs mseries→ bs mseries
⊖[] ⟦c⟧ = ⟦−c⟧
⊖b#bs ⟦Cb(x)e | F ⟧ = ⟦(⊖bs C)b(x)e | ⊖b#bs F ⟧

(⊕) :: ∀bs :: basis. bs mseries→ bs mseries→ bs mseries
⟦c1⟧ ⊕[] ⟦c2⟧ = ⟦c1 + c2⟧
⟦C1b(x)e1 | F ⟧ ⊕b#bs ⟦C2b(x)e2 | G⟧ =

if e1 > e2 then
�C1b(x)e1

�� F ⊕b#bs ⟦C2b(x)e2 | G⟧�

else if e1 < e2 then
�C2b(x)e2

�� ⟦C1b(x)e1 | F ⟧ ⊕b#bs G
�

else
�(⟦C1⟧ ⊕bs ⟦C2⟧)b(x)e1

�� F ⊕b#bs G
�

4

Contributed Paper ISSAC ’19, July 15–18, 2019, Beijing, China

150

In the addition algorithm, the first equation is the base case for an
empty basis; the second equation ‘merges’ two series by descending
exponents. Note that each of the three cases in the second equation
contains a corecursive call to the addition function on the same
basis and the third case additionally contains a recursive call to the
addition function for the truncated basis.

Multiplication can be implemented analogously (using an auxili-
ary function that performs multiplication with a monomial Cb(x)e),
but operations like the division and powers are slightly more com-
plicated: We first need to implement substitution of a multiseries
into a asymptotic or convergent power series.

6.2 Substituting into a Power Series
For this, consider some function h : R→ R that has an asymptotic
power series expansion c0 + c1x + c2x2 + . . . at x = 0. Other points
are, of course, also possible (including at ∞), but x = 0 will be
enough for our purposes. If we have a function f : R → R with
some multiseries expansion F whose leading exponent is negative,
then f clearly tends to 0 for x → ∞ and we can substitute the
multiseries expansion for f into the power series expansion for h to
obtain amultiseries expansion forh(f (x)). This can be implemented
as follows:

powser :: ∀bs :: basis. R llist→ bs mseries→ bs mseries
powser [] F = ⟦⟧bs
powser [c | cs] F = ⟦c | F ⊙ powser cs F ⟧bs

In particular, this allows us to turn a multiseries expansion for f
into a multiseries expansion for h ◦ f if f (x) −→ 0 and h is analytic
at 0. This will be a key ingredient for the remaining operations that
we implement.

6.3 Division and Powers
Consider the multiplicative inverse function x 7→ 1

x , which we
can use to handle division. Given a function f with a multiseries
expansion F = ⟦Cb(x)e | F̄ ⟧b#bs, we consider the remainder after
dropping the leading term of the expansion, i. e. f̄ (x) := f (x) −
C(x)b(x)e with the expansion F̄ . We will use F̄ and f̄ (x) with that
meaning from now on. We can then write:

1
f (x) =

1
C(x)b(x)

−e 1
1 + 1

C(x)b(x)−e f̄ (x)

Since t 7→ 1
1+t has the power series expansion 1 + t + t2 + . . . at

t = 0, we can then define the multiplicative inverse I(F):
I :: ∀bs :: basis. bs mseries→ bs mseries
I(⟦c⟧[]) = ⟦ 1

c ⟧[]
I(⟦Cb(x)e | F̄ ⟧b#bs) = ⟦I(C)b(x)−e⟧ ⊙b#bs

powser [1, 1, . . .] (⟦I(C)b(x)−e⟧ ⊙b#bs F̄)
Note that I is only well-defined if the multiseries it is given is

trimmed. Also note that the argument of powser indeed always has
a negative leading exponent here since lead_exp (F̄) < e .

The same approach can be used to handle the case f (x)u for any
constant u ∈ R by writing

f (x)u = c(x)ub(x)ue (1 + c(x)−1b(x)−e f̄ (x))u

and using the power series expansion for t 7→ (1 + t)u . Here the
condition is that the multiseries must be trimmed with positive
leading coefficient (so that it is eventually positive).

6.4 Sine and Cosine
The sine and cosine functions can also be treated similarly: Given
f (x) ∼ F with F = ⟦Cb(x)e | F̄ ⟧b#bs, we distinguish three cases:
• If e < 0, we substitute F into the power series for sin or cos.
• If e > 0, then f (x) tends to infinity and no multiseries ex-
pansion for sin f (x) or cos f (x) can exist.
• If e = 0, we can write

sin f (x) = sinC(x) · cos f̄ (x) + cosC(x) · sin f̄ (x)
and analogously for cos f (x). Expansions for sinC(x) and
cosC(x) can be computed by a recursive call, and cos f̄ (x)
and sin f̄ (x) are covered by the e < 0 case.

6.5 Logarithm
If we apply this same approach to the ln function, we arrive at the
expression

ln f (x) = ln c(x) + e lnb(x) + ln
(
1 + c(x)−1b(x)−e f̄ (x)) .

The first and last summand can be handled analogously to the
previous cases; however, there is a problem in the second summand:
If e , 0, we need a multiseries expansion for lnb(x) w. r. t. the
basis b # bs. In our definition of a well-formed basis, we assumed
that for i < n, each lnbi (x) has a known expansion in terms of
bi+1, . . . ,bn so that we only have a problem if b is the very last
element in the basis (i. e. bs = []). The solution in this case is to add
bn+1(x) := lnb(x) as a new basis element at the very end of the
basis. This ensures that when we now reach the last basis element
bn+1, the exponent e is zero and we do not encounter the problem.
Note that inserting a new basis element is a global operation, which
means that we must lift all expansions computed before to the new,
larger basis. E. g. when we expand f (x) + д(x) by first expanding
f (x) ∼ F and then д(x) ∼ G, the latter step may have enlarged the
basis, in which case we need to lift F to the new basis.

6.6 Exponentials
For the exponential function, the situation is much more complic-
ated. If e < 0, we can simply use the power series expansion for exp.
If e = 0, we have exp(f (x)) = exp(c(x)) exp(f̄ (x)) and have there-
fore reduced the problem to a recursive call and the ‘e < 0’ case. If,
on the other hand, e > 0, various case distinctions are required to
determine whether exp(f (x)) has an expansion w. r. t. the current
basis or whether exp(f (x)) or exp(−f (x)) or some variation thereof
has to be added as a new basis element – and if yes, where. For the
details of this case distinction, we refer again to Shackell [12].

6.7 Other Functions
All functions discussed so far had sufficiently nice properties w. r. t.
addition or multiplication of their argument that allowed us to
handle the case f (C(x) + f̄ (x)). Indeed, this is enough to handle
the class of all functions built from basic arithmetic, exp, ln as well
as sin, cos, and tan at finite points. For functions without these nice

5

Contributed Paper ISSAC ’19, July 15–18, 2019, Beijing, China

151

properties, this simple approach does not work, as we will see later
in section 9.

7 CONNECTING SERIES TO FUNCTIONS
We have defined a representation for multiseries and implemented
a number of operations on them; however, we have so far not
formally defined what it means for a multiseries to be an expansion
of a particular function. Since we want to prove theorems inside
the logic, this connection has to be defined explicitly inside the
logic, and the correctness of all the operations we defined must be
formally proven w. r. t. it. This is the crucial difference to Computer
Algebra Systems and it results in a high level of confidence in the
results produced by the expansion algorithm, but also includes a
much greater amount of effort.

We will introduce a predicate wfbs(F) whose meaning is that
F is a well-formed multiseries w. r. t. the basis bs and it is a valid
expansion of the functionF (x) that it is implicitly connected to. The
former includes things like ‘the exponents are strictly decreasing’
and that the depth of the nested list structure is the same as the
length of the basis. To understand what the latter means explicitly,
we recall the notion of a Poincaré expansion: If we take a finite initial
segment of the (possibly infinite) series, we obtain an approximation
to the function such that the error is ‘Big-O’ of the first omitted
term. However, we will use a slightly different formulation of this
that is more suitable for our representation of multiseries.

Recall that the type of multiseries is defined by recursion on
the associated basis: A multiseries C w. r. t. the empty Basis is
simply ⟦c⟧[] for a real constant c . The obvious definition of well-
formedness in this case is to require that C(x) = c eventually.

On the other hand, a multiseries w. r. t. a non-empty basis b # bs
is a (possibly infinite) list. As mentioned before, these lists are a
codatatype and a natural way to define predicates for a codatatype
is coinductively. For this, we need to express wfb#bs(⟦F ⟧) in terms
of wfb#bs(F̄), where F = ⟦Cb(x)e | F̄ ⟧. To see how to do this, it is
instructive to consider the situation for a power series:

f (x) ∼ cxe + F ←→ f (x) ∈ O(xe) ∧ e > lead_exp(F) ∧
f (x) − cxe ∼ F

Adapting this for multiseries, we find that wfb#bs(F) requires:
wfbs(C) ∧ wfb#bs(F̄) ∧

e > lead_exp(F̄) ∧ ∀e ′>e . F (x) ∈ o(b(x)e ′)
Since in our formalisation, multiseries can also have finite length,
we also need to consider the case of an empty multiseries. There
are two natural possibilities here:

(1) demand that the function f (x) being expanded is flat w. r. t.
b(x), i. e. f (x) ∈ O(b(x)e) for all e

(2) demand that f (x) = 0 eventually
These two differ only if f (x) goes to 0 faster than we can measure
with our basis (e. g. exp(−x) with the basis x). Our algorithm never
produces such ‘expansions’, so we chose the stronger option (2).

We then define wf to be a coinductive predicate given by these
three rules. This means that wf holds iff there is some finite or
infinite derivation tree using these three rules. This is equivalent to
the Poincaré expansion definition (with the caveat about expansions
of finite length), but we never show this connection in Isabelle since

we do not need it. That this definition of wf makes sense can be
seen from the following theorem:

Theorem 7.1 (Connection between wf and ∼).
If wf bs(F) for a well-formed basis bs and a trimmed multiseries F
with leading monomial cb1(x) · . . . · bn (x), then

F (x) ∼ cb1(x) · . . . · bn (x) .
It remains to show the correctness of the multiseries operations
we defined. As an example, the correctness theorems for addition
and the multiplicative inverse have the following form, assuming a
well-formed basis bs:

wfbs(F) ∧wfbs(G) =⇒ wfbs(F ⊕ G)

wfbs(F) ∧ trimmed(F) =⇒ wfbs(I(F))
Here, trimmed is a predicate that states that F is trimmed. All
of these proofs are straightforward inductions over bs where the
recursive case requires coinduction w. r. t. the coinductive predicate
wf. As a simple example, let us consider the correctness proof of
the negation operation:

Theorem 7.2 (Correctness of series negation).
If bs is a well-formed basis and wfbs(F) holds, then wfbs(⊖F).

Proof. We proceed by induction over the basis. The case for an
empty basis is trivial. Let us therefore consider a basis of the shape
b # bs. Then applying coinduction w. r. t. the wf predicate gives us
the following proof obligation:

∀F . wfb#bs(F) =⇒
⊖F = [] ∧ (∀∞x . − F (x) = 0

) ∨
∃ C e F̄ . ⊖ F = ⟦Cb(x)e | ⊖ F̄ ⟧ ∧

(∀x . − F (x) − C(x)b(x)e = −F̄ (x)) ∧
wfbs(C) ∧wfb#bs(F̄) ∧
(∀e ′ > e . − F (x) ∈ o(b(x)e ′) ∧
e > lead_exp(⊖ F̄)

By unfolding one step of the corecursive definition of ⊖, this
simplifies to the following two cases:

Case 1: F = ⟦⟧
Then wfb#bs(F) implies ∀∞x . F (x) = 0 by definition and the
proof obligation simplifies to ∀∞x . −F (x) = 0 , which is then
obviously true.

Case 2: F = ⟦Cb(x)e | F̄ ⟧ for some C, e, F̄
It is clear that the values C, e , and F̄ in the existential quan-
tifier must be instantiated with ⊖C , e , and F̄ , respectively.
After simplification, all the proof obligations follow trivially
from the induction hypothesis and the definitions. □

Series negation is certainly one of the easiest operations, but the
above proof still illustrates three things:
• The proof obligations, even for simple operations, can get
quite big and confusing.
• The case distinctions that have to be made are obvious from
the definition of the operation.
• Once the right case distinctions are made, the proof obliga-
tions become much simpler and seem very obvious.

6

Contributed Paper ISSAC ’19, July 15–18, 2019, Beijing, China

152

The proofs for more involved operations are larger and have more
cases, but otherwise very similar to this one. Ultimately, writing
these proofs is relatively easy due to the guidance from Isabelle. It is
always obvious what has to be done, even though this is somewhat
obscured by the fact that Isabelle presents the proof obligations in
the rather unwieldy form of disjunctions of existential quantifiers
that we saw above. We also modified the definitions of the opera-
tions several times and were able to adjust the correctness proofs
with little effort.

8 COMPUTING AND USING EXPANSIONS
Isabelle is written in Standard ML and exposes this interface to
users to add new tools on-the-fly. While the notions of multiseries
and expansions is fully formalised in the system, the procedure to
compute them is not; it is merelyML code. This makes the procedure
much easier to implement and more flexible since it lives outside
the system, but a disadvantage is that we cannot reason about
it inside the system – e. g. we cannot prove that it is correct or
terminates. However, due to the architecture of Isabelle, a mistake in
our procedure would result in a run-time error or non-termination
at worst, but never an incorrect result since all reasoning performed
by the procedure still passes through the Isabelle kernel.

The basic procedure is fairly simple:
(1) Convert the expression defining the function f (x) that is to

be expanded into an AST.
(2) Find expansions ‘bottom up’ to produce a theorem of the

form wf bs(F) with F (x) = f (x). Trim only when necessary.
(3) Trim the resulting multiseries until the desired result can be

read off.
To perform the trimming, the multiseries expressions (which are
Isabelle terms) need to be ‘evaluated’ partially until the leading
monomial can be read off. To this end, we wrote a small lazy eval-
uation framework for Isabelle terms that supports lazy pattern
matching on terms and returns a theorem showing that the reduced
term is indeed equal (w. r. t. equality in Higher-Order Logic) to the
original term.

The entire procedure is then packaged into a proof tactic called
real_asymp that can be applied to problems of the form

• f (x) x→G−−−−−→ F
• f (x) ∈ L[F](д(x)) where L is any of the five Landau symbols
• eventually f (x) ≤ д(x) w. r. t. F
• f (x) ∼[F] д(x)

where F andG are filters corresponding to either the full / pointed /
left / right neighbourhood of a real number or ∞ /−∞ /±∞. This
tactic constitutes the most important part of this work: Isabelle
is a document-oriented theorem prover, so the typical use case is
that a user will already know the limit of the function, write down
the corresponding statement, and then prove it with our method.
However, for convenience, we also added the diagnostic commands
real_limit and real_expansion that display the limit (resp. an
initial fragment of the multiseries expansion) of a given function.

Since some more advanced functions and their asymptotic be-
haviour are not available in Isabelle’s core library but only in the
external Archive of Formal Proofs, we also provide an interface to
register new user-defined functions with the expansion procedure

at a later time. This is done to achieve partial support for the Γ and
erf functions.

‘Oscillating’ expressions like sin(x) for x →∞, (−1)n , or ⌊x⌋ do
not have a multiseries expansion, but limited support for them is
provided using what we call ‘asymptotic interval arithmetic’: When
encountering such an expression f (x), we attempt to compute
bound functions l(x) and u(x) with known multiseries expansions
such that l(x) ≤ f (x) ≤ u(x). For example, for sin(x) and (−1)n
the bounds would be [−1; 1]; for ⌊x⌋ they would be [x − 1;x]. This
method is clearly not complete since it does not handle cancellations
of any kind; e. g. the bounds computed for sin(x) − sin(x) would
be [−2; 2]. Nevertheless, this is enough to handle many interesting
cases, e. g. sin(x)/x x→∞−−−−−→ 0 or lnx − ln⌊x⌋ ∈ O(1/x).

9 LIMITATIONS
There are three limitations of the current implementation:

Zero-checking.Asmentioned before, recognising whether a given
constant (even an exp-log constant) is zero is difficult. The two
methods that we implemented so far use Isabelle’s simplifier and
interval arithmetic to attack this problem. This works well for many
interesting examples, and whenever this fails, the user can simply
prove the corresponding fact by hand and add it to the hypotheses.
Automating this further would be desirable, but would require great
improvements to Isabelle’s automation for arithmetic reasoning.

Worst-case performance. It is well-known that the algorithm im-
plemented here has very poor worst-case behaviour; e. g. Richard-
son et al. [8] give the example

1
1 − 1

x
− 1

1 − 1
x
+ x−n .

Here, many initial zeros need to be trimmed before arriving at the
x−n term. The algorithm therefore takes at least linear time in n,
leading to poor performance for large n. A possible solution for this
problem is given by van der Hoeven [13] in the form of cartesian
representations, but it would be highly non-trivial to integrate this
approach with our current work and we have not observed such
severe performance problems in our examples.

Non-exp-log functions. The ‘oscillating’ functions sin, cos, and
tan are only fully supported if their argument is bounded. More
comprehensive approaches for sin etc. exist [10], but to our know-
ledge, these are not used in practice.

Functions like arctan, Γ, and erf are only partially supported:
Γ(x) and erf(x) are currently only supported for x → ∞ since
other cases tend to involve complicated constants that Isabelle’s
automation cannot handle well.

As a more fundamental problem, for any of these functions, we
cannot expand expressions like f (x + exp(−x)) where the larger
basis element exp(x) is not present in the leading term of the argu-
ment of f but is present in terms of smaller order. Implementing
this requires substituting a multiseries with leading exponent 0 into
an asymptotic power series. Shackell [12] shows how to do this,
but it is not clear to us how to formally prove that this is correct.

7

Contributed Paper ISSAC ’19, July 15–18, 2019, Beijing, China

153

10 EVALUATION
We evaluated our procedure on a large number of examples, in-
cluding the list given in Section 8 of Gruntz’s PhD thesis [4]. Ac-
cording to Gruntz, this list consists of various problems that were
difficult for computer algebra systems in the early 1990s. Indeed
Maxima still returns an incorrect result for one of them.2 All of
the 20 exp-log examples can be proven fully automatically by our
tactic within less than a second (average 0.24 s, maximum 0.65 s).
Of the 17 non-exp-log examples, most lie outside the scope of our
procedure due to unsupported functions (e. g. Bessel functions) or
our incomplete support for Γ and erf . The 5 that are supported,
however, all work in ≤ 2.5 s . Our list of examples can be found in
the file src/HOL/Real_Asymp/Real_Asymp_Examples.thy of the
Isabelle distribution. A short user manual is also provided.

Let us return to our introductory example from Figure 1 and
compare our tactic with two CASs capable of handling additional
assumptions on the parameters, Mathematica and Maple.

Maple computes the limit to be 0 in 0.8 s. However, this alone
does not tell us that the approach is from the right. If we force Maple
to really compute the leading term of the expansion by multiplying
the function with ln1+ ε2 x and then asking for the limit, it gives up
almost immediately and returns the unevaluated expression.

Mathematica computes the limit to be 0 in 21 s. If we force it
to compute the leading term, it produces the correct result in 463 s,
but it also imposes the unnecessary side condition ε < 1.

Our tactic fails on this example with an errormessage indicating
that it could not determine the sign of lnb · ε . The reason for this
is that the simplifier does not use the theorem x < 0 ∧ y > 0 =⇒
x ·y < 0 by default. If we add this to the simplifier’s rewriting rules,
the tactic successfully proves the limit to be 0+ in 0.3 s. It is even
able to compute the leading term − 1

2ε lnb · ln−1− ε2 x in 0.4 s.
All in all, these examples show that, within its scope, our tactic

works well and perhaps even handles parameters somewhat bet-
ter than proprietary CASs like Mathematica and Maple. In general,
however, these CASs are of course much better both in terms of per-
formance and number of supported functions. Still, we are pleased
with this result, especially considering the immense additional dif-
ficulty imposed by working inside a proof assistant where we want
not only a result, but a proof.

11 RELATEDWORK
The first complete algorithm for the computation of exp-log func-
tions was given by Shackell in 1990 [11]. Gruntz built on this al-
gorithm and implemented it in Maple [4]. Gruntz’s algorithm was
later also implemented in Mathematica by Richter [9]. As stated be-
fore, our work builds directly on themultiseries approach presented
by Richardson et al. [8].

In our prior work on the proof of the Akra–Bazzi theorem [3],
we introduced some very simple automation related to asymptot-
ics, e. g. to automatically prove or disprove statements of the form
f (x) ∈ O(д(x)) where f and д are products of powers of iterated
logarithms, e. g. x lnx ∈ O(x2(ln lnx)3). Apart from Isabelle/HOL,
there are some other systems that have a library around limits

2Maxima claims that limx→∞ ln ln(x + exp(ln x ln ln x))/ln ln ln(exp(x) + x) = 0,
whereas the correct result is 1. We reported this bug in February 2018 but have not
received a response.

and asymptotics (e. g. Coq, HOL Light, Mizar), but to our know-
ledge, none of them has any automation for proving limits or other
asymptotic properties for any non-trivial class of problems.

12 CONCLUSION
We provide the first implementation of automated real asymptotics
inside a proof assistant. The procedure provides:
• full support for basic arithmetic, exp, ln, roots, and | · |
• full support for sin, cos, and tan at finite points
• ‘best effort’ support using interval arithmetic for oscillating
functions like sin, cos, tan at infinity and ⌊·⌋ and ⌈·⌉
• partial support for arctan, Γ, and erf
• support for parameters

All results produced by the procedure are trustworthy by construc-
tion as they pass through the Isabelle kernel, which reduces them
down to definitions and basic logical inferences. On most practical
examples, the procedure works quickly and fully automatically.

Acknowledgements.Wewould like to thank Joris van der Hoeven
and Bruno Salvy for their help in understanding Multiseries and
Maximilian P. L. Haslbeck and Kristina Magnussen for comments
on a draft of this paper. We also thank Andrei Popescu for helping
us with coinduction, and the reviewers for their comments. This
work was supported by DFG grant NI 491/16-1.

REFERENCES
[1] Julian Biendarra, Jasmin Christian Blanchette, Aymeric Bouzy, Martin Desharnais,

Mathias Fleury, Johannes Hölzl, Ondřej Kunčar, Andreas Lochbihler, FabianMeier,
Lorenz Panny, Andrei Popescu, Christian Sternagel, René Thiemann, and Dmitriy
Traytel. 2017. Foundational (Co)datatypes and (Co)recursion for Higher-Order
Logic. In Frontiers of Combining Systems, Clare Dixon and Marcelo Finger (Eds.).
Springer International Publishing, Cham, 3–21.

[2] Nicolas Bourbaki. 1971. Topologie générale.
[3] Manuel Eberl. 2017. Proving Divide and Conquer Complexities in Isabelle/

HOL. Journal of Automated Reasoning 58, 4 (01 Apr 2017), 483–508. https:
//doi.org/10.1007/s10817-016-9378-0

[4] Dominik Gruntz. 1996. On Computing Limits in a Symbolic Manipulation System.
Ph.D. Dissertation. ETH Zürich.

[5] Johannes Hölzl. 2009. Proving Inequalities over Reals with Computation in
Isabelle/HOL. In Proceedings of the ACM SIGSAM 2009 International Workshop
on Programming Languages for Mechanized Mathematics Systems (PLMMS’09),
Gabriel Dos Reis and Laurent Théry (Eds.). Munich, 38–45.

[6] Johannes Hölzl, Fabian Immler, and Brian Huffman. 2013. Type Classes and
Filters for Mathematical Analysis in Isabelle/HOL. In Proceedings of the 4th
International Conference on Interactive Theorem Proving (ITP’13). Springer-Verlag,
Berlin, Heidelberg, 279–294. https://doi.org/10.1007/978-3-642-39634-2_21

[7] Daniel Richardson. 1995. A Simplified Method of Recognizing Zero Among
Elementary Constants. In Proceedings of the 1995 International Symposium on
Symbolic and Algebraic Computation (ISSAC ’95). ACM, New York, NY, USA,
104–109. https://doi.org/10.1145/220346.220360

[8] Daniel Richardson, Bruno Salvy, John Shackell, and Joris Van der Hoeven. 1996.
Asymptotic Expansions of exp-log Functions. In Proceedings of the 1996 Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC ’96). ACM, New
York, NY, USA, 309–313. https://doi.org/10.1145/236869.237089

[9] Udo Richter. 2005. Automatische Berechnung von Grenzwerten und Implementier-
ung in Mathematica. diploma thesis. Universität Kassel.

[10] Bruno Salvy and John Shackell. 2010. Measured limits and multiseries. Journal of
the London Mathematical Society 82, 3 (2010), 747–762. https://doi.org/10.1112/
jlms/jdq057

[11] John Shackell. 1990. Growth estimates for exp–log functions. Journal of Sym-
bolic Computation 10, 6 (1990), 611–632. https://doi.org/10.1016/S0747-7171(08)
80161-7

[12] John R. Shackell. 2004. Symbolic Asymptotics. Algorithms and Computation in
Mathematics, Vol. 12. Springer Berlin–Heidelberg.

[13] Joris van der Hoeven. 1997. Automatic asymptotics. Ph.D. Dissertation. École
polytechnique, Palaiseau, France.

[14] Joris van der Hoeven. 2006. Transseries and real differential algebra. Lecture Notes
in Mathematics, Vol. 1888. Springer-Verlag.

8

Contributed Paper ISSAC ’19, July 15–18, 2019, Beijing, China

154

https://isabelle.in.tum.de/website-Isabelle2018/dist/library/HOL/HOL-Real_Asymp/Real_Asymp_Examples.html
https://isabelle.in.tum.de/website-Isabelle2018/dist/library/HOL/HOL-Real_Asymp-Manual/document.pdf
https://doi.org/10.1007/s10817-016-9378-0
https://doi.org/10.1007/s10817-016-9378-0
https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1145/220346.220360
https://doi.org/10.1145/236869.237089
https://doi.org/10.1112/jlms/jdq057
https://doi.org/10.1112/jlms/jdq057
https://doi.org/10.1016/S0747-7171(08)80161-7
https://doi.org/10.1016/S0747-7171(08)80161-7

B Divide-and-Conquer Recurrences

This chapter was originally published as an article in a peer-reviewed journal:

M. Eberl.
Proving Divide and Conquer Complexities in Isabelle/HOL.
Journal of Automated Reasoning, 58(4):483–508, Apr 2017, Springer Netherlands. © 2016
DOI: 10.1007/s10817-016-9378-0.

I am the sole author of this article, thus all contributions are mine.

Synopsis: This work gives the rst formal proof of the Akra–Bazzi Theorem, a ‘cooking book’
method to determine the asymptotic growth of solutions to the divide-and-conquer recur-
rences that are often encountered in the analysis of divide-and-conquer algorithms. As a
simple corollary of this, a generalised version of the well-known Master Theorem for divide-
and-conquer recurrences is also obtained, including a proof method to facilitate applying it
to concrete examples with minimal manual work. The usability of this is demonstrated on
several textbook examples such as merge sort and Karatsuba multiplication.

On the following pages, the full article is reprinted by permission from Springer Nature
Customer Service Centre GmbH. The ocial version on SpringerLink can be found under the
DOI cited above.

71

http://dx.doi.org/10.1007/s10817-016-9378-0

J Autom Reasoning (2017) 58:483–508
DOI 10.1007/s10817-016-9378-0

Proving Divide and Conquer Complexities in
Isabelle/HOL

Manuel Eberl1

Received: 23 July 2015 / Accepted: 3 June 2016 / Published online: 13 June 2016
© Springer Science+Business Media Dordrecht 2016

Abstract The Akra–Bazzi method (Akra and Bazzi in Comput Optim Appl 10(2):195–
210, 1998. doi:10.1023/A:1018373005182), a generalisation of the well-known Master
Theorem, is a useful tool for analysing the complexity of Divide and Conquer algo-
rithms. This work describes a formalisation of the Akra–Bazzi method (as generalised by
Leighton in Notes on better Master theorems for divide-and-conquer recurrences, 1996.
http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf) in the interactive theo-
rem prover Isabelle/HOL and the derivation of a generalised version of the Master Theorem
from it. We also provide some automated proof methods that facilitate the application of this
Master Theorem and allow mostly automatic verification of Θ-bounds for these Divide and
Conquer recurrences. To our knowledge, this is the first formalisation of theorems for the
analysis of such recurrences.

Keywords Isabelle/HOL ·Master Theorem ·Akra–Bazzi ·Divide and Conquer algorithms ·
Recurrences · Complexity · Landau symbols

1 Introduction

The Master Theorem is the textbook method taught in undergraduate algorithms lectures
for analysing the asymptotic run-time complexity of many Divide and Conquer algorithms.
The general form of the admissible algorithms is several non-recursive base cases and one
recursive case, in which a problem of size n is reduced to a fixed number a of subproblems of
size n/b, which are then solved recursively and their solutions combined to a solution for the
original problem. One simple example is Merge Sort: lists of length ≤1 are always trivially
sorted and thus returned unchanged (the base cases); lists of size ≥2 are split into half, each

This work was supported by DFG RTG 1480 (PUMA).

B Manuel Eberl
eberlm@in.tum.de

1 Fakultät für Informatik, Technische Universität München, Garching, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-016-9378-0&domain=pdf
http://orcid.org/0000-0002-4263-6571
http://dx.doi.org/10.1023/A:1018373005182
http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf

484 M. Eberl

half is sorted recursively, and the two sorted halves are then combined into a single sorted
list. The recurrence relation of this algorithm’s run-time function T is

T (n) = 2T
(1
2n

) + n

and the classical Master Theorem then states T ∈ Θ(n ln n). One problem with this is that,
strictly speaking, the recurrence relation for T is actually something like

T (n) = T
(⌊ 1

2n
⌋) + T

(⌈ 1
2n

⌉) + n

since one certainly cannot split a list of length 3 into two lists of length 1.5. Intuitively, one
may think that the rounding does not change the asymptotic behaviour of the function, seeing
as the rounding operations are asymptotically small disturbances. This is, in fact, the case,
but proving it is not entirely trivial and is seldom done rigorously in textbooks or lectures,
especially the case when both floors and ceilings are used at the same time, as in the example
above.1

In order to establish a basis for the verified run-time analysis of such algorithms, we
wanted to formalise the Master Theorem in the theorem prover Isabelle/HOL. This must,
of course, include rigorous handling of rounding operations. We therefore chose not to base
our formal proof on any of the literature proofs for the Master Theorem, but to instead prove
a generalisation known as the Akra–Bazzi method [1], and derive the Master Theorem as a
corollary. As a pleasant side effect, this version of the Master Theorem supports much more
complex recursion patterns than the classical Master Theorem from the literature.

To make the application of the Master Theorem in the theorem prover almost as simple
as on paper, we provided some proof automation machinery that facilitates the definition of
functions from Akra–Bazzi-type Divide and Conquer recurrences and allows applying the
Master Theorem to them in a mostly automatic way.

To provide some motivation, consider the following two recurrences, which are related to
a deterministic selection algorithm and so-called Ham-Sandwich trees. They are far outside
the scope of the classical Master Theorem, but their complexities can easily be found and
formally proven in Isabelle/HOL with the generalised Master Theorem we formalised:

f1(n) = f1
(⌊ n

5

⌋) + f1
(⌊ 7n

10

⌋ + 6
) + 12n

5 Result: f1 ∈ Θ(n)

f2(n) = f2
(⌊ n

2

⌋) + f2
(⌊ n

4

⌋) + 1 Result: f2 ∈ Θ(nlog2 ϕ) where ϕ = 1+√
5

2

Outline In Sect. 2, we will list some related work on the type of recurrences that we focus
on in this work. Section 3 then gives some important background information, namely about
the notation used in this work and the notions of integration and Landau symbols that are
used in the formal proof.

Section 4 contains a formal description of the types of recurrences for which our results—
the Akra–Bazzi theorem and the generalisedMaster Theorem—hold, and Sects. 5 and 6 state
these results. The formal Isabelle/HOL proof of the results is explained in Sect. 7. Section 8
gives a list of the proof automation we developed for the Master Theorem as well as a few
examples of its application.

Finally, Sect. 9 compares the scope of our version of theAkra–Bazzi theorem toLeighton’s
and our Master Theorem to the ‘textbook’ version of the Master Theorem.

1 In Introduction to Algorithms [7], for example, only the ‘floor’ case is proven and the ‘ceiling’ case is stated
to be analogous. The question of what happens when both floors and ceilings are used is not addressed.

123

Proving Divide and Conquer Complexities in Isabelle/HOL 485

2 Related Work

The original paper by Akra and Bazzi [1] that introduced the Akra–Bazzi method uses a so-
called order transform to reduce the problem to a two-dimensional problem. Their version of
the method requires very strong assumptions on the parameters of the problem: the recursive
definition must be of the following form:

f (x) = g(x) +
k∑

i=1

ai · f (� x
bi

�) (
bi ∈ N≥2, g non-decreasing

)

In particular, recursive calls like f (� x
2), f (� 2

3 x�), or f (� 1
3 x� + 1) are not allowed.

Leighton [14] gives a vastly generalised version of the theorem in which the above restric-
tions on g and the recursive call are weakened greatly; in particular, his version allows small
deviations from the linear recursive call, which, among other things, includes rounding and
adding constants. Furthermore, his approach is muchmore direct; he gives a simple inductive
proof that we deemed much more amenable to formal verification than the original proof by
Akra andBazzi. The statement of the theoremwe proved and its formal proof in Isabelle/HOL
are therefore modelled very closely after his; the only differences in the theorem statement
are that some assumptions in our version have beenweakened slightly (e. g. allowing negative
values on some initial segment of the domain).

Based on these two works, Bazzi and Mitter [5] give a version of the Akra–Bazzi theorem
for probabilistic recurrences, where both the factors bi and the non-linear deviations in the
recursive calls are random variables with some restrictions. The theorem then determines
the asymptotic growth of the expectation of the function thus defined in a way that is very
similar to the theorem given by Leighton.

Drmota and Szpankowski [8] analyse recurrences of the form

f (x) = g(x) +
m∑

i=1

ai · f
(⌊

b j · x + O
(
x1−ε

)⌋) +
m∑

i=1

āi · f
(⌈

b̄ j · x + O
(
x1−ε

)⌉)

with the additional restriction that the b j · x + O(x1−ε) are increasing. The class of functions
that they consider is therefore smaller than Leighton’s and ours. However, while Leighton
and we are only interested in finding aΘ-bound for f , Drmota and Szpankowski obtain very
precise approximations for f , such as f (x) = C2 log n+C ′

2+o(1) for explicitly computable
constants C2, C ′

2. They also describe the oscillations that arise in f due to the rounding in
the recurrence and which are not present in the corresponding continuous recurrences. For
the Θ-analysis, these oscillations are irrelevant, since they are asymptotically small.

3 Preliminaries

3.1 Syntactical Note

We take some liberties when presenting expressions or theorems from Isabelle/HOL here
to increase readability. In particular: type coercions between real numbers and natural num-
bers are always omitted; schematic variables, which are implicitly universally quantified in
Isabelle, are printed with an explicit ∀ for the sake of clarity; Isabelle-specific syntax, such
as {0 . .<1} is replaced with the standard notation [0; 1) ; lists are sometimes implicitly used
as sets or as indexed sequences (e. g. asi for the i-th element of as, starting from 1).

123

486 M. Eberl

Table 1 Definitions of the five
Landau symbols f ∈ O(g) ←→ ∃c > 0. ∃x0. ∀x ≥ x0. | f (x)| ≤ c · |g(x)|

f ∈ o(g) ←→ ∀c > 0. ∃x0. ∀x ≥ x0. | f (x)| ≤ c · |g(x)|
f ∈ �(g) ←→ ∃c > 0. ∃x0. ∀x ≥ x0. | f (x)| ≥ c · |g(x)|
f ∈ ω(g) ←→ ∀c > 0. ∃x0. ∀x ≥ x0. | f (x)| ≥ c · |g(x)|
f ∈ Θ(g) ←→ f ∈ O(g) ∧ f ∈ �(g)

A function taking some value x and returning some t that may depend on x will be written
as λx . t , following Lambda calculus syntax as opposed to the traditional mathematical syntax
x �→ t . We will occasionally omit the ‘λ’ when it is clear from the context that we mean a
function and what the function variable is, particularly in Landau symbols (e. g. x ∈ O(x2)
instead of (λx . x) ∈ O(λx . x2)).

3.2 Landau Symbols

3.2.1 Definition

Before stating the Akra–Bazzi theorem, we shall give the precise definition of the Landau
symbols that were used in the Isabelle formalisation [10]. Since there was no suitable for-
malisation of asymptotic growth in Isabelle/HOL, we created a library of Landau symbols
specifically for the formalisation of the Akra–Bazzi method, but with other use cases in mind
as well. The definitions we chose differ slightly from those given in Introduction to Algo-
rithms by Cormen et al. [7]: for f ∈ O(g) to hold, they require f and g to be positive for
sufficiently large inputs, whereas we do not. According to our definitions,

f ∈ O(g) ←→ − f ∈ O(g) ←→ f ∈ O(−g) ←→ − f ∈ O(−g).

This choice was made because, in our experience, formal reasoning with Landau symbols—
especially automatic reasoning—becomes easier this way.

Table 1 shows the definitions of our Landau symbols. In Isabelle, Landau symbols are
defined for functions from any (not necessarily linearly) ordered set to any linearly-ordered
field. The restriction to fields was made due to the fact that the existence of multiplicative
inverses makes Landau symbols more ‘well-behaved’, and one may even argue that Landau
symbols for functions into e. g. the natural numbers do not make much sense—one will
probably always want to view such functions as functions into the reals.

There is one prior formalisation of Landau symbols in Isabelle by Avigad et al. [2]. It is
related to their proof of the Prime Number theorem. They only defined the symbol ‘O’, and
they did so in the following fashion:

O(f) = {h | ∃c. ∀x . |h(x)| ≤ c · | f (x)|}

This definition differs from the commonly used one in so far as this one requires the inequality
to hold on all inputs, not just for sufficiently large inputs. If the inputs are natural numbers, the
two are almost equivalent, but in the context of the Akra–Bazzi theorem, we also use Landau
symbols for functions of type R → R and then these two definitions are quite different. We
therefore deemed it necessary to create our own library of Landau symbols.

123

Proving Divide and Conquer Complexities in Isabelle/HOL 487

3.2.2 Decision Procedure

During the process of proving the generalised Master Theorem, and particularly in its appli-
cations, we encountered a great number of proof obligations like x ∈ O(x3), x2 ∈ o(x2 ln x),
ln x ∈ ω(ln ln x), etc. These problems all have the following in common:

– They are of the form f ∈ L(g), where L is a Landau symbol and f, g : R → R are
products of ‘elementary buildingblocks’ like the identity function and iterated logarithms.

– The building blocks can be ordered linearly w. r. t. their growth (e.g. x , ln x , ln ln x ,…)
in such a way that the growth rate of any positive power of a function in the sequence
eclipses that of any power of the subsequent one (e.g. x p ∈ ω((ln x)q) for any p, q ∈ R

with p > 0).
– These problems are typically very tedious to prove formally.
– Most mathematicians would dismiss them as trivial and not even bother proving them by

hand in a pen-and-paper proof.

The obvious course of action was therefore to develop automation machinery to discharge
these proof obligations automatically. In the following, we will sketch the decision procedure
we developed for this problem without going into too much detail.

Definition 1 (Families of functions) We call F ⊆ R
R a family of functions if

– F is closed under multiplication and multiplicative inverse
– each function in F is positive for all sufficiently large inputs
– F is linearly ordered in the sense that for any f, f̄ ∈ F , at least one of f ∈ o(f̄),

f ∈ ω(f̄), and f ∈ Θ(f̄) holds

Examples for such families are {λx . x p | p ∈ R} or {λx . ax | a ∈ R>0}.
Definition 2 (Dominating families) We say that a family F dominates a family G if

– there exists an f ∈ F such that g ∈ o(f) for all g ∈ G
– f (x) ∈ o(f̄ (x)) implies f (x) · g(x) ∈ o(f̄ (x) · ḡ(x)) for any f, f̄ ∈ F and g, ḡ ∈ G

If F dominates G, we immediately have for all f, f̄ ∈ F and g, ḡ ∈ G:
f (x) · g(x) ∈ o(f̄ (x) · ḡ(x)) ←→ f ∈ o(f̄) ∨ (f ∈ Θ(f̄) ∧ g ∈ o(ḡ))

f (x) · g(x) ∈ O(f̄ (x) · ḡ(x)) ←→ f ∈ o(f̄) ∨ (f ∈ Θ(f̄) ∧ g ∈ O(ḡ))

f (x) · g(x) ∈ Θ(f̄ (x) · ḡ(x)) ←→ f ∈ Θ(f̄) ∧ ḡ ∈ Θ(ḡ)

In other words: o, O , and Θ on F · G behave analogously to <, ≤, and = on pairs with
lexicographic ordering.

Furthermore, it is obvious that if F dominates G and G dominates H, then F dominates
G ·H. This notion of transitivity implies that we can lift the above result on pairs to sequences
where each family dominates the next. We can thus reduce any statement of the form

f1(x) . . . fn(x) ∈ L(f̄1(x) . . . f̄n(x)) (with L ∈ {o, O,Θ} and fi , f̄i ∈ Fi)

to a statement involving only Boolean connectives and expressions of the form fi ∈ l(f̄i)

for l ∈ {o, O,Θ}.
Of course, this means that if the Fi are chosen such that we can decide fi ∈ l(f̄i), we

can also decide f ∈ L(f̄). In our decision procedure, the admissible function families are
powers of iterated logarithms; i. e. for each fixed k ∈ N, the functions of the form

λx . (ln . . . ln︸ ︷︷ ︸
k times

x)p (for some p ∈ R)

123

488 M. Eberl

form one family. Deciding fk ∈ l(f̄k) for two functions in such a family can then be done
easily by comparing the exponents.

Our decision procedure therefore simply analyses a goal like x ∈ o(x ln x) and rewrites it
to x1(ln x)0 ∈ o(x1(ln x)1). By the above result, this holds iff 1 < 1∨(1 = 1∧0 < 1), which
Isabelle’s simplifier can easily prove automatically. We integrated this decision procedure
into Isabelle’s simplifier, so proof obligations of this form will automatically be rewritten to
necessary and sufficient conditions containing only Boolean connectives and comparisons
on the exponents. Additionally, if these exponents are numeric constants, the conditions are
then proven (or disproven) automatically by the simplifier. This made many of our proofs
and the application of our main results much easier.

In addition to this decision procedure, we also have simplifier setup that can:

– Simplify terms like L(f + g) to L(g) if f ∈ o(g) or to L(f) if g ∈ o(f)

– Cancel common factors like h from f · h ∈ L(g · h) if h(x) is non-zero for large enough
x

– Perform simplifications on functions under a Landau symbol that are valid for sufficiently
large values, e. g. ln(2x) = ln 2 + ln x . (This is not valid in Isabelle/HOL for x ≤ 0)

We initially formalised the proof of the asymptotic inequalities described in Sect. 7.2 in
an elementary way. The resulting proofs were complex and virtually unreadable. After the
introduction of Landau symbols and with heavy use of the automation we just described, we
were able to more than halve the length of these proofs and make them significantly more
readable.

3.3 Integration

Since the statement of the Akra–Bazzi theorem contains an integral, we need to decide on a
definition of integration and a formalisation thereof. Isabelle contains a number of different
integrals, most notably the Henstock–Kurzweil integral (also known as the Gauge integral)
on functions fromEuclidean spaces to normed real vector spaces and theBochner integral (an
extension of the Lebesgue integral) on functions from ameasure space to the real numbers [3].

In the proof of the Akra–Bazzi theorem, we noticed that the only properties of integration
that we actually needed are the following:

Integral of constant functions If a ≤ b and c ∈ R≥0, the constant function λx . c is integrable
on [a; b] and

∫ b

a
c dx = (b − a) · c.

Monotonicity If f and g are integrable on [a; b] and f (x) ≤ g(x) for all x ∈ [a; b], then
∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx .

Integrability on sub-intervals If f is integrable on [a; d] and a ≤ b ≤ c ≤ d , then f is also
integrable on [b; c] .

Splitting if f is integrable on [a; c] and a ≤ b ≤ c, then
∫ b

a
f (x) dx +

∫ c

b
f (x) dx =

∫ c

a
f (x) dx .

123

Proving Divide and Conquer Complexities in Isabelle/HOL 489

We therefore proved the Akra–Bazzi theorem generically w. r. t. the integral definition: the
theorem can be instantiated with any concept of integration and integrability that fulfils the
above four properties. We call such an integral admissible.

The ‘standard’ integrals like the Riemann, Lebesgue, Bochner, and Henstock–Kurzweil
integrals all fulfil these properties and are therefore admissible, as is the non-negative
Lebesgue integral that ignores the negative part of the integrand. Notably, all of these are
generalisations of the Riemann integral on non-negative functions. The natural question is
then: Are there any admissible ‘integrals’ that are not integrals in the usual sense, i. e. not
merely generalisations of the Riemann integral?

The answer to this is not immediately obvious, but it turns out that any admissible integral
I must coincide with the Riemann integral on any function f that is both piecewise con-
tinuous and I-integrable, but it can differ from the Riemann integral and its generalisations
on non-piecewise-continuous functions. Since non-piecewise-continuous functions should
rarely arise in the context of the Akra–Bazzi theorem, we shall not explore the issue further
here; a more detailed explanation and a proof can be found in the “Appendix”.

4 General Setting

Let us now set up the context in which the remainder of this work will be set: For our version
of the Akra–Bazzi method, we shall consider a recursively-defined function f : N → R

with the following properties:

f (x) ≥ 0 for all x ∈ [x0; x1)

f (x) = g(x) +
k∑

i=1

ai · f (bi · x + hi (x)) for all x ≥ x1

for a natural number k ∈ N \ {0}, a function g : N → R, natural numbers x0, x1 ∈ N, real
coefficients ai ∈ R, bi ∈ R, functions hi : N → R such that:

– g(x) ≥ 0 for all x ≥ x1
– ai ≥ 0 for all i ∈ [1; k] and ai > 0 for at least one i ∈ [1; k]
– bi ∈ (0; 1) for all i ∈ [1; k]
– for every i ∈ [1; k], there exists an ε > 0 such that hi ∈ O(x/ ln1+ε x)

– bi x + hi (x) ∈ N and x0 ≤ bi · x + hi (x) < x for all i ∈ [1; k] and all x ≥ x1
(well-definedness of f)

We will now explain the meaning of these variables.

The recursion structure The parameters x0, x1, k, ai , bi , and hi characterise the recursion
structure of the function f . To understand the role of the different parameters, it is useful to
look at them in the case when f describes the cost of a Divide & Conquer algorithm: the
values between x0 and x1 are the costs of the base cases; the cost of the recursive case is
defined recursively as the sum of the costs of the recursive calls and the costs of combining
the results of the calls. Each triple (ai , bi , hi) corresponds to ai recursive calls of the form
bi · x + hi (x) ; the costs of combining the results are represented by the function g.

Variation terms The hi represent asymptotically small variation terms in the recursive call,
allowing some deviation from the linear term bi · x . This is not merely a nice gimmick—
it is actually necessary to have something like this, since, due to the discreteness of the

123

490 M. Eberl

natural numbers, a purely linear term in the recursive call is impossible. This approach covers
rounding and other deviations in a uniform way, as opposed to making ad-hoc arguments
why certain kinds of rounding do not change the result.

For example, the terms f (� x
2 �), f (� x

2), and f (� x
2 	 + 42) would be admissible, as they

can be expressed as f (b · x + h(x)) for some b ∈ (0; 1) and some h : N → R where
h ∈ O(1). However, much larger deviations, such as f (� 1

2n − √
n�) , are also allowed.

Of course, enough base cases must be provided (i. e. x0 and x1 must be chosen large
enough and far enough apart) to fulfil the well-definedness conditions; a function ‘definition’
like f (x) = f (� 3

4 x)+1 for x1 = 3 cannot be allowed since f (3) = f (� 9
4)+1 = f (3)+1

is contradictory.
Leighton [14] mentions that the condition that the hi be in O(x/ ln1+ε x) for some ε > 0

is tight in some sense, since the recurrence f (x) = 2 f (x/2 + x/ ln x) has the asymptotic
growth x lnΘ(1) x , whereas the recurrence f (x) = 2 f (x/2) (i. e. without the variation term)
has the growth Θ(x).

5 The Akra–Bazzi Method

Having established the necessary context, we will now present the main theorems of the
Akra–Bazzi method for the function f . To do this, we first need to define the characteristic
number of an Akra–Bazzi recurrence: The contribution of the recursion structure (without
the ‘recombination costs’ g) to the asymptotic growth can be summarised as a single real
number, which we call p. This number is defined implicitly as

k∑

i=1

ai · b p
i = 1

If the ai are not all zero (which we assumed), this equation defines p uniquely. To show this,
we consider the function

t : R → R>0, x �→
k∑

i=1

ai · b x
i .

This function is continuous and t (x)
–∞−−→ ∞ and t (x)

∞−−→ 0. Therefore, by the intermediate
value theorem, some p such that

∑k
i=1 ai · bp

i = 1 always exists, and since t is also strictly
decreasing, this p is unique.

We can now state the three variants of the Akra–Bazzi theorem, which give �, O , and Θ

bounds on the growth of f :

Theorem 1 (Akra–Bazzi theorem, � version) Fix ḡ : R → R with g ∈ �(ḡ), i. e. ḡ is an
asymptotic lower bound for g. Assume that:

– f (x) > 0 for all sufficiently large x
– ḡ(x) ≥ 0 for all sufficiently large x
– there exist real constants c > 0 and C with ∀i ∈ [1; k]. C < bi such that for all

sufficiently large x: ∀u ∈ [C · x; x]. ḡ(u) ≤ cḡ(x)

– ḡ is bounded above on every real interval [a; b] with a ≥ a0 for some a0
– ḡ(x)/x p+1 is integrable on any interval [a; b] with a ≥ a0 for some a0

Then

f ∈ �

(
x p

(
1 +

∫ x

t

ḡ(u)

u p+1 du

))

for any sufficiently large t.

123

Proving Divide and Conquer Complexities in Isabelle/HOL 491

Theorem 2 (Akra–Bazzi theorem, O version) Fix ḡ : R → R with g ∈ O(ḡ), i. e. ḡ is an
asymptotic upper bound for g. Assume that:

– ḡ(x) ≥ 0 for all sufficiently large x
– there exist real constants c > 0 and C with ∀i ∈ [1; k]. C < bi such that for all sufficiently

large x: ∀u ∈ [C · x; x]. ḡ(u) ≥ cḡ(x)

– ḡ(x)/x p+1 is integrable on any real interval [a; b] with a ≥ a0 for sufficiently large a0

Then

f ∈ O

(
x p

(
1 +

∫ x

t

ḡ(u)

u p+1 du

))

for any sufficiently large t.

Combining these two results yields:

Theorem 3 (Akra–Bazzi theorem, Θ version) Fix ḡ : R → R with g ∈ Θ(ḡ), i. e. ḡ has the
same asymptotic growth as g. Assume that:

– f (x) > 0 for all sufficiently large x
– ḡ(x) ≥ 0 for all sufficiently large x
– there exist real constants c1, c2 > 0 and C with ∀i ∈ [1; k]. C < bi such that for all

sufficiently large x: ∀u ∈ [Cx; x]. c1ḡ(x) ≤ ḡ(u) ≤ c2 ḡ(x)

– ḡ is bounded above on every real interval [a; b] with a ≥ a0 for some a0
– ḡ(x)/x p+1 is integrable on any real interval [a; b] with a ≥ a0 for some a0

Then

f ∈ Θ

(
x p

(
1 +

∫ x

t

ḡ(u)

u p+1 du

))

for any sufficiently large t.

The restrictions on ḡ are somewhat technical, especially the ones of the form ∃c1 >

0.∀u ∈ [Cx; x]. c1 ḡ(x) ≤ ḡ(u). Leighton [14] calls these thepolynomial-growth conditions2

and also asserts that if |ḡ′| is upper-bounded by a polynomial, the conditions always hold.
This is incorrect, since e. g. g(x) = 1 + sin(x) is non-negative and the absolute of its
derivative is upper-bounded by 1, but it does not fulfil either of the two polynomial-growth
conditions.

Nevertheless, the most interesting cases are those where ḡ(x) is of the form xr lns x , and
as Leighton also remarks, these functions always satisfy the polynomial-growth conditions.
Restricting ḡ to this form, whichwe shall do in the next section, will lead us to a specialisation
of the Akra–Bazzi method that is very close to the well-known Master Theorem.

Let us now analyse the conclusion of the last Akra–Bazzi theorem more closely in an
informal way: expanding the product inside the Θ yields

f ∈ Θ
(
x p) + Θ

(
x p

∫ x

t

ḡ(u)

u p+1 du

)
.

Clearly, the x p in the left summand is independent from ḡ and would still be present even for
ḡ = 0. The Θ(x p) can therefore be seen as the inherent cost of the recursion itself, which
depends only on p, which in turn is determined uniquely by the ai and bi . The term with the

2 His conditions are slightly more restrictive; among other things, he requires them to hold for all x ≥ 1.

123

492 M. Eberl

integral on the right, on the other hand, also depends on the recombination costs ḡ(x), and it
is big whenever ḡ(x) is big.

It is also clear that the values of the base cases are completely irrelevant (as long as they
are non-negative).

6 The Master Theorem

If we look at a restricted class of functions ḡ, we can make the last two observations of the
previous section a bit more precise: If ḡ(x) is of the form xq for some q ∈ R, the conditions
on ḡ (non-negativity, polynomial growth, boundedness, integrability) are all satisfied. If the
other conditions for the Akra–Bazzi theorem are satisfied, we have:

f ∈ Θ
(
x p) + Θ

(
x p

∫ x

t
uq−p−1du

)
=

⎧
⎨

⎩

Θ
(
x p) + Θ

(
xq) = Θ

(
x p) for q < p

Θ
(
x p) + Θ

(
x p ln x

) = Θ
(
x p ln x

)
for q = p

Θ
(
x p) + Θ

(
xq) = Θ

(
xq) for q > p

The three cases differ in how high the inherent costs of the recursion are compared to the
recombination costs. In the first case, the recombination costs are smaller than the recursion
costs, which means that most of the work is done at the bottom of the recursion tree, since
there are many leaves, but recombining them is cheap (‘bottom-heavy recursion’). In the
third case, the recombination costs dominate and most of the work will be done recombining
the results near the top of the recursion tree (‘top-heavy recursion’). In the second case,
the recursion costs and the recombination costs have a similar rate of growth (‘balanced
recursion’). This case can be generalised further by considering ḡ(x) = x p lnq x .

This leads to our generalised Master Theorem:

Corollary 1 (Master Theorem)

Bottom-heavy recursion. If g ∈ O(xq) for some q < p, then f ∈ O(x p). If, additionally,
f (x) is positive for all sufficiently large x, we even have f ∈
Θ(x p).3

Balanced recursion.
If g ∈ Θ(x p lnq x) for some q, then

f ∈

⎧
⎪⎨

⎪⎩

Θ(x p) if q < −1

Θ(x p ln ln x) if q = −1

Θ(x p lnq+1 x) if q > −1

Top-heavy recursion. If g ∈ Θ(xq) for some q > p, then f ∈ Θ(xq) = Θ(g).

7 Proving the Akra–Bazzi Theorem and the Master Theorem

We shall now describe the proof of our version of the Akra–Bazzi theorem. Some parts of
the proof are very technical; in these parts of the proof, we shall attempt to provide the
reader with a good high-level understanding of what must be proven and how we proved it
without mentioning toomany details. For more details, we refer the reader to the formal proof

3 Note that due to the other constraints on f and g, the condition that f (x) is positive for all sufficiently large
x must hold if either g(x) is positive for all sufficiently large x or f (x) is positive in all the base cases, i. e.
for x ∈ [x0; x1).

123

Proving Divide and Conquer Complexities in Isabelle/HOL 493

Fig. 1 The locale akra_bazzi_function that formally captures the conditions imposed upon the recursively-
defined function f

development in the Archive of Formal Proofs [9] or, where applicable, Leighton’s proof [14].
In any case, we recommend that readers familiarise themselves with Leighton’s proof before
attempting to understand ours.

7.1 Formal Setting

First of all, we will explain how the conditions mentioned in Sect. 4 are stated formally in
Isabelle/HOL: We use a locale [4] called akra_bazzi_function. A locale is a named context
that contains fixed variables, assumptions, and definitions. Such a locale can be instantiated
by providing values for the fixed variables and proving that its assumptions hold for these
values. Instantiating a locale gives the user access to all the facts thatwere proven in this locale,
specialised to the specific values that it was instantiated with. Figure 1 shows the definition
of the locale akra_bazzi_function, modulo some insignificant notational adjustments.

The only difference to the conditions stated in Sect. 4 is that the recursive calls are of the
shape f (tsi (x)) instead of f (bi · x +hi x). The reason for this is that the latter would require
expressing a call like f (� 1

2 x�) in the rather awkward form f (12 x + (� 1
2 x� − 1

2 x)), whereas
the former is more direct.

The conditions on the recursive calls are replaced by the condition that all the tsi be
Akra–Bazzi terms, where

definition akra_bazzi_term(x0, x1, b, t) =
(∃ ε h. ε > 0 ∧ h ∈ O(λx . x/ ln1+ε x) ∧

(∀x ≥x1. t (x) ≥ x0 ∧ t (x) < x ∧ b · x + h(x) = t (x))) .

One can then easily prove introduction rules to discharge this condition for specific forms
of recursive calls, e. g.

lemma akra_bazzi_term_ceiling:

assumes b > 0 and b < 1 and x0 ≤ b · x1 and (1 − b) · x1 ≥ 1

shows akra_bazzi_term(x0, x1, b, λx . �b · x)

Provided that such rules exist for every recursive call occurring in the recursive equation
of f , this condition and most of the other locale assumptions contain only the constants as,
bs, k, x0, and x1 and can therefore be solved by simple evaluation for a concrete function f
with concrete values for as, bs, etc. The remaining conditions are:

123

494 M. Eberl

1. ∀x ∈[x0; x1). f (x) ≥ 0
2. ∀x ≥x1. g(x) ≥ 0
3. ∀x ≥x1. f (x) = g(x) + ∑k

i=1 asi · f (tsi (x))

These conditions must be shown by the user, but they are typically direct consequences from
the definitions of f and g.

7.2 Asymptotic Estimates

We now move on to the actual proofs. First of all, we need to prove a number of asymptotic
inequalities, i. e. inequalities that hold whenever x is large enough. Leighton mentions the
first four of these on page 5, but does not provide any proof (he mentions that they can be
proven using ‘standard Taylor series expansions and asymptotic analysis’). Apart from these,
we found that we need four more inequalities that ensure that conditions like bi x +hi (x) < x
and 1− ln(bi x +hi (x))−ε/2 > 0 will hold for all relevant inputs x . Without these conditions,
several terms that occur in the proof of the Akra–Bazzi theorem would not even be well-
defined.

Lemma 1 (Asymptotic inequalities) For any H, ε ∈ R>0, b ∈ (0; 1), and p ∈ R, there
exists some x0 ∈ R such that the following inequalities hold for all x ≥ x0:

(
1 ± H

b ln1+ε x)

)p [
1 +

(
ln−ε/2

(
bx + H x

ln1+ε x

))]
≥ 1 + ln−ε/2 x (1)

(
1 ± H

b ln1+ε x

)p [
1 −

(
ln−ε/2

(
bx + H x

ln1+ε x

))]
≤ 1 − ln−ε/2 x (2)

1

2

(
1 + ln−ε/2 x

) ≤ 1 (3)

2
(
1 − ln−ε/2 x

) ≥ 1 (4)
[
ln

(
bx − H x

ln1+ε x

)]−ε/2

< 1 (5)

H

ln1+ε x
<

b

2
(6)

H

ln1+ε x
<

1 − b

2
(7)

x

(
1 − b − H

ln1+ε x

)
> 1 (8)

(The ± means that the inequality must hold both for a + and for a − in its place.)

Proof All but the first two of these inequalities are trivial and can be proven by comparing the
limits of the left-hand side and the right-hand side; the first two, however, require non-trivial
asymptotic analysis using Taylor series expansions. Since these two inequalities are a crucial
ingredient in the proof of this generalised Akra–Bazzi theorem, we will briefly sketch the
proof of (1). (The proof of (2) is mostly analogous.)

The key ingredient in proving the inequality is the Taylor series expansion

(1 ± t (x))y = 1 ± yt (x) + O
(
t (x)2

) = 1 + O(t (x)) if lim
x→∞ t (x) = 0

123

Proving Divide and Conquer Complexities in Isabelle/HOL 495

In the following, we will indicate such an expansion with the symbol
Taylor= and a curly

bracket that denotes which term is taken to be t (x) in the expansion.
First of all, we estimate the first factor on the left-hand side with4

(
1 ±

t (x)︷ ︸︸ ︷
H

b ln1+ε x

)p
Taylor= 1 + O

(
ln−1−ε x

) = 1 + o
(
ln−1−ε/2 x

)

Moreover, we have in the second factor:

ln−ε/2
(

bx + H x

ln1+ε x

)

=
[
ln

(
bx

(
1 + H

b ln1+ε x

))]−ε/2

=
[
ln bx + ln

(
1 + H

b ln1+ε x

)]−ε/2

= (
ln−ε/2 bx

) [
1 + 1

ln bx
ln

(
1 + H

b ln1+ε x

)

︸ ︷︷ ︸
t (x)

]−ε/2
Taylor=

= (
ln−ε/2 bx

) [
1 + O

(
1

ln bx
ln

(
1 + H

b ln1+ε x

))]

= (
ln−ε/2 bx

) + (
ln−1−ε/2 bx

)
O

(
ln

(
1 + H

b ln1+ε x

))

= (
ln−ε/2 bx

) + (
ln−1−ε/2 bx

)
o(1)

= (
ln−ε/2 bx

) + o
(
ln−1−ε/2 x

)

Combining these two asymptotic estimates, we have:

(
1 ± H

b ln1+ε x

)p [
1 +

(
ln−ε/2

(
bx + H x

ln1+ε x

))]

= [
1 + o

(
ln−1−ε/2 x

)] [
1 + (

ln−ε/2 bx
) + o

(
ln−1−ε/2 x

)]

= 1 + (ln bx)−ε/2 + o
(
ln−1−ε/2 x

)

= 1 + (ln b + ln x)−ε/2 + o
(
ln−1−ε/2 x

)

= 1 + (
ln−ε/2 x

)
(
1 + ln b

ln x︸︷︷︸
t (x)

)−ε/2

+ o
(
ln−1−ε/2 x

) Taylor=

= 1 + (
ln−ε/2 x

) (
1 − ε ln b

2 ln x
+ O

(
ln−2 x

)) + o
(
ln−1−ε/2 x

)

= 1 + ln−ε/2 x +
[−ε ln b

2
ln−1−ε/2 x + o

(
ln−1−ε/2 x

)]

4 The notation here becomes a bit informal. Terms like f (x)+ O(g(x)) stand for the set { f (x)+h(x) | h(x) ∈
O(g(x))} and all equality symbols are then essentially set inclusions, i. e. f (x) + O(. . .) = g(x) + O(. . .)

means that the left-hand side is a subset of the right-hand side.

123

496 M. Eberl

Since b∈(0; 1), we have ln b < 0. Therefore, the term in brackets will be positive for
sufficiently large x and we have:

≥ 1 + ln−ε/2 x

��
7.3 The Continuous Akra–Bazzi Theorem

For the next part, we closely followLeighton’s proof (pp. 6–8). Herewe prove theAkra–Bazzi
theorem for continuous recurrences, i. e. a function f : R → R that fulfils all the conditions
stated before, but not just on N, but on R. We therefore look at the following setting, which
is essentially the real-valued analogue to the setting described in Sect. 4:

Consider f : R → R with the following properties:

f (x) ≥ 0 for all x ∈ [x0; x1]

f (x) = g(x) +
k∑

i=1

ai · f (bi · x + hi (x)) for all x > x1

for a natural number k ∈ N \ {0}, a function g : R → R, natural numbers x0, x1 ∈ R, real
coefficients ai ∈ R, bi ∈ R, functions hi : N → R, and p ∈ R such that:

– g(x) ≥ 0 for all x ≥ x0
– ai ≥ 0 for all i ∈ [1; k] and ai > 0 for at least one i ∈ [1; k]
– bi ∈ (0; 1) for all i ∈ [1; k]
– for every i ∈ [1; k], there exists an εi > 0 such that hi ∈ O(x/ ln1+εi x)

–
∑k

i=1 ai · bp
i = 1

– g(u)u−p−1 is integrable on [x0; x] for any x ≥ x0

We can assume w.l.o.g. that all the hi fulfil hi ∈ O(x/ ln1+ε x) for the same ε by choosing
the minimum of all the εi values. It is then clear that there exists a constant H such that, for
sufficiently large x , we have |hi (x)| ≤ H x ln−1−ε x for all i ∈ [1; k].

We also assume that x0 and x1 are chosen large enough such that the following inequalities
hold:

– 1 ≤ x0 ≤ 1
2bi x1 for all i ∈ [1; k]

– |hi (x)| ≤ H x ln x−1−ε for all i ∈ [1; k] and all x ≥ x1
– the inequalities (1) to (8) from Lemma 1 for any b ∈ {b1 . . . bk} and all x ≥ x0
– there exists some real number C such that Cx ≤ bi x − H x ln−1−ε x for any i ∈ [1; k]

and all x ≥ x1

7.3.1 The Lower Bound

We will now show how to obtain an asymptotic lower bound on f (x). For this, we further
have to assume the existence of positive and finite bounds

F := inf
x∈[x0;x1]

f (x) and G:= sup
x∈[x0;x1]

g(x)

and the growth condition ∀x ≥ x1. ∀u ∈ [Cx; x]. c2g(x) ≥ g(u) for some c2 > 0. We can
then show the following two lemmas:

123

Proving Divide and Conquer Complexities in Isabelle/HOL 497

Lemma 2 There exists a c4 > 0 such that, for any i ∈ [1; k] and all x ≥ x1:

x p
∫ x

bi x+hi (x)

g(u)

u p+1 du ≤ c4g(x)

Proof Technical and uninteresting; refer to Leighton’s Lemma 1 or our formal proof devel-
opment for details.

Lemma 3 There exists a c5 > 0 with c5 ≤ 1
2c4

such that, for any x ∈ [x0; x1]:

2c5x p
(
1 +

∫ x

x0

g(u)

u p+1 du

)
≤ f (x)

Proof We have x p ≤ max(x p
0 , x p

1) and g(u)u−p−1 ≤ G ·max(x−p−1
0 , x−p−1

1); it is easy to
use this to derive some bound c such that

2

F
x p

(
1 +

∫ x

x0

g(u)

u p+1 du

)
≤ c

and therefore

2

c
x p

(
1 +

∫ x

x0

g(u)

u p+1 du

)
≤ F ≤ f (x).

Setting c5:=min(c−1, (2c4)−1) yields the desired bound. ��
We can then show the following lower bound for f

Lemma 4

c5x p (1 + ln−ε/2 x
) (

1 +
∫ x

x0

g(u)

u p+1 du

)
≤ f (x) for all x ≥ x0

Proof The proof is by induction over x with the base case x ∈ [x0; x1] and the inductive
step x > x1 while assuming that the induction hypothesis holds for all bi x + hi (x) for any
i ∈ [1; k]. This induction scheme is well-founded, since the bounds on the hi and inequality
(8) imply �bi x + hi (x)	 < �x	 for any x ≥ x1, so the measure μ : R → N, x �→ �x	
decreases.

Base case We have x ∈ [x0; x1] and therefore:

c5x p (1 + ln−ε/2 x
)

︸ ︷︷ ︸
≤2

by Lemma 1.(3)

(
1 +

∫ x

x0

g(u)

u p+1 du

)
≤ 2c5x p

(
1 +

∫ x

x0

g(u)

u p+1 du

)
Lemma 3≤ f (x)

Induction step We have x > x1 and we assume the following induction hypothesis for any
i ∈ [1; k]:

c5(bi x + hi (x))p (1 + ln−ε/2(bi x + hi (x))
)
(

1 +
∫ bi x+hi (x)

x0

g(u)

u p+1 du

)

(IH)

≤ f (bi x + hi (x))

We can then show:

c5x p (1 + ln−ε/2 x
) (

1 +
∫ x

x0

g(u)

u p+1 du

)
Lemma 3≤

123

498 M. Eberl

≤ c5x p (1 + ln−ε/2 x
) (

1 +
∫ x

x0

g(u)

u p+1 du

)
+ g(x) − 2c5c4g(x)

Lemma 1.(3)≤

≤ c5x p (1 + ln−ε/2 x
) (

1 +
∫ x

x0

g(u)

u p+1 du

)
+ g(x) − c5c4

(
1 + ln−ε/2 x

)
g(x)

= g(x) + c5x p (1 + ln−ε/2 x
)
(
1 +

∫ x

x0

g(u)

u p+1 du − c4
x p

g(x)

)
Lemma 2≤

= g(x) + c5x p (1 + ln−ε/2 x
)
(
1 +

∫ x

x0

g(u)

u p+1 du −
∫ x

bi x+hi (x)

g(u)

u p+1 du

)

= g(x) + c5x p (1 + ln−ε/2 x
)
(

1 +
∫ bi x+hi (x)

x0

g(u)

u p+1 du

)

= g(x) +
(

k∑

i=1

ai b
p
i

)

c5x p (1 + ln−ε/2 x
)
(

1 +
∫ bi x+hi (x)

x0

g(u)

u p+1 du

)

= g(x) +
k∑

i=1

ai c5bp
i x p (1 + ln−ε/2 x

)
(

1 +
∫ bi x+hi (x)

x0

g(u)

u p+1 du

)

Let us now focus on the bp
i x p

(
1 + ln−ε/2 x

)
term. Let s:=−1 if p ≥ 0 and s:=1 otherwise.

By applying first Lemma 1.(1) and then |hi (x)| ≤ H x ln x−1−ε , we have:

bp
i x p (1 + ln−ε/2 x

) (1)≤ bp
i x p

(
1 + s H

bi ln1+ε x

)p (
1 + ln−ε/2

(
bi x + H x

ln1+ε x

))

=
(

bi x + s H x

ln1+ε x

)p (
1 + ln−ε/2

(
bi x + H x

ln1+ε x

))

≤ (bi x + hi (x))p (1 + ln−ε/2 (bi x + h(x))
)

Plugging this result into the inequality chain we interrupted before, we have:5

g(x) +
k∑

i=1

ai c5bp
i x p

(
1 + ln−ε/2 x

)(

1 +
∫ bi x+hi (x)

x0

g(u)

u p+1 du

)

≤ g(x) +
k∑

i=1

ai c5 (bi x + hi (x))p
[
1 + ln−ε/2 (bi x + h(x))

](

1 +
∫ bi x+hi (x)

x0

g(u)

u p+1 du

)
(I H)≤

≤ g(x) +
k∑

i=1

ai f (bi x + hi (x)) = f (x)

This concludes the induction. We have thus shown that for all x ≥ x0:

c5x p
(
1 +

∫ x

x0

g(u)

u p+1 du

)
≤ c5x p (1 + ln−ε/2 x

)
(
1 +

∫ x

x0

g(u)

u p+1 du

)
≤ f (x)

��
5 Note the implicit case distinction for p ≥ 0 and p < 0: for p ≥ 0, we need to show bi x − H x ln−1−ε x ≤
bi x + hi (x) , whereas for p < 0 we need to show bi x + H x ln−1−ε x ≥ bi x + hi (x) since the negative
exponent flips the inequality. This case distinction is not mentioned by Leighton.

123

Proving Divide and Conquer Complexities in Isabelle/HOL 499

7.3.2 The Upper Bound

The proof of the upper bound is analogous with the following exceptions:

– The assumptions we need are supx∈[x0;x1] f (x) < ∞ and ∀x ≥ x1. ∀u ∈
[Cx; x]. c1g(x) ≤ g(u) for some c1 > 0.

– The inequality we need to show by induction is

f (x) ≤ c6x p (1 − ln−ε/2 x
) (

1 +
∫ x

x0

g(u)

u p+1 du

)

7.4 Lifting to the Discrete Case

The remaining work in the proof of the Akra–Bazzi theorem is now to lift this result for
continuous recurrences to discrete recurrences. We will again illustrate this for the lower
bound. We consider the setting given in Theorem 1.

First of all, we find values G > 0 and x̂0, x̂1 such that:

– x1 ≤ x̂0 ≤ x̂1
– f (x) > 0 for all x ≥ x̂0
– g(x) ≥ Gḡ(x) for all x ≥ x̂0 (possible because g ∈ �(ḡ))
– ḡ(x) ≥ 0 for all x ≥ x̂0
– bi x + hi (x) ≥ x̂0 for all x ≥ x̂1 and i ∈ [1; k]
Since g has the asymptotic lower bound ḡ and we want to find an asymptotic lower bound

on f , it is natural that the function obtained by copying the definition of f , but with the costs
ḡ instead of g, should be an asymptotic lower bound on f . We therefore define the function
f̂ : N → R as follows:

f̂ (x) =
{
max(0, f (x)/G) if x < x̂1
ḡ(x) + ∑k

i=1 ai f̂ (bi x + hi (x)) otherwise

It is clear that f̂ is non-negative everywhere, positive for large enough x , and G f̂ (x) ≤ f (x)

for all x ≥ x0. Therefore, any asymptotic lower bound on f̂ will also be a lower bound on f .
Next, we find some x̄0 > x̂1 such that

– the asymptotic inequalities (1) to (8) hold for all x ≥ x0, c = H , b = bi for i ∈ [1; k]
– |hi (x)| ≤ H x ln−1−ε x for all x ≥ x̄0 and i ∈ [1; k]
– Cx ≤ bi x − H x ln−1−ε x for all x ≥ x̄0 and i ∈ [1; k]
– ḡ is bounded from above on all intervals that lie above x̄0
– ḡ(u) ≤ c2 ḡ(x) for all x ≥ x̄0 and u ∈ [Cx; x]
– f̂ (�x�) > 0 and ḡ(x) ≥ 0 for all x ≥ x̄0
– ḡ(u)u−p−1 is integrable on all intervals that lie above x̄0

and we find a x̄1 such that x̄1 ≥ 2
bi

x̄0 for all i ∈ [1; k].
We can then extend f̂ to a function f̄ : R → R using the following definition:

f̄ (x) =
{

f̂ (�x�) if x ≤ x̄1
g(x) + ∑k

i=1 ai f̄ (bi x + hi (x)) otherwise

Clearly, f̄ (x) = f̂ (x) for all natural numbers x .

123

500 M. Eberl

We apply the continuous lower bound theorem derived in the previous section to f̄ (x)

with the ‘base cases’ between x̄0 and x̄1. This gives us the lower bound

c5x p
(
1 +

∫ x

x̄0

ḡ(u)

u p+1 du

)
≤ f̄ (n)

For all natural numbers n ≥ x̄0, we then have:

Gc5n p
(
1 +

∫ n

x̄0

ḡ(u)

u p+1 du

)
≤ G f̄ (n) = G f̂ (n) ≤ f (n)

and therefore

f ∈ �

(
n p

(
1 +

∫ n

x̄0

ḡ(u)

u p+1 du

))
.

Since we could have chosen x̄0 larger as well if we had wanted to, we have essentially shown
that

f ∈ �

(
n p

(
1 +

∫ n

t

ḡ(u)

u p+1 du

))

holds for any sufficiently large t .
The formal proof of all of this consists mostly of finding large enough values for

x̄0 and x̄1 and proving that all required properties hold. For instance, the condition that
inf x∈[x̄0;x̄1] f̄ (x) > 0 is fulfilled because, by definition, f̄ (x) = f̂ (�x�) only takes a finite
number of values on the interval [x̄0; x̄1], all of which are positive.

This entire process of linking the assumptions of the discrete settings to the assumptions
of the continuous setting is very technical and intricate—it takes up almost a quarter of the
entire proof of the Akra–Bazzi theorem—but mathematically uninteresting, which is why
we left out a lot of detail in this paper proof.

7.5 The Master Theorem

From the proof of the Akra–Bazzi theorem in the locale context akra_bazzi_function, we
can now show the Master Theorem, also inside this context. The proofs are straightforward
applications of the Akra–Bazzi theorem. The user can then interpret the akra_bazzi_function
locale for her function f and use the case of theMaster Theorem appropriate for her function.

In the Isabelle formalisation, the Master Theorem is split into five cases (cf. Table 2), with
the first case having a weak form (O) and a strong form (Θ).

Table 2 The five cases of the Master Theorem as formalised in Isabelle/HOL

Case name Assumptions Conclusion

Case 1 (O) g ∈ O(xq) q < p f ∈ O(x p)

Case 1 g ∈ O(xq) q < p f (x) > 0
(for suff. large x)

f ∈ Θ(x p)

Case 2.1 g ∈ Θ(x p lnq x) q < −1 f ∈ Θ(x p)

Case 2.2 g ∈ Θ(x p/ ln x) f ∈ Θ(x p ln ln x)

Case 2.3 g ∈ Θ(x p lnq−1 x) q > 0 f ∈ Θ(x p lnq x)

Case 3 g ∈ Θ(xq) q > p f ∈ Θ(xq)

123

Proving Divide and Conquer Complexities in Isabelle/HOL 501

8 Automation

The formalisation also contains three proof methods that add a certain degree of automation
to the usage of the Master Theorem. We will describe them in the following sections.

8.1 Akra–Bazzi Terms

As mentioned previously in Sect. 7.1, the condition that recursive calls must be Akra–Bazzi
terms canbedischargedby introduction rules that reduce the condition to simple statements on
constants. We provide a theorem collection called akra_bazzi_term_intro to which
the user can add custom introduction rules for Akra–Bazzi terms. The Akra–Bazzi proof
methods then automatically use these rules to discharge conditions of this kind.

8.2 Akra_Bazzi_Termination

It is possible to define recursive functions with complex recursion schemes in Isabelle/
HOL [13]. For every function definition, the user must show that the function is indeed
well-defined: the definition must be complete, different equations must not overlap with one
another, and the functionmust terminate, i. e. theremust not be any infinite chains of recursive
calls. The first two conditions can virtually always be proven automatically; the last condition,
termination, is usually the most difficult to prove. Isabelle/HOL can prove it automatically
in many cases, but Akra–Bazzi style recursion schemes are usually not among them: for
example, attempting to define the cost function for Merge Sort recursively by its recurrence
relation f (n) = f (� n

2 �)+ f (� n
2)+ n for n ≥ 2 will fail since Isabelle’s termination prover

is unable to prove that n becomes smaller in every recursion step.
To aid the user in proving termination for such recursion schemes, we developed the proof

method akra_bazzi_termination, which uses the akra_bazzi_term_intro
rules mentioned before to reduce the proof obligation of termination to simpler proof oblig-
ations that contain only constants, which can then be solved automatically using Isabelle’s
simplifier. A typical function definition of an Akra–Bazzi function then looks like this:

function merge_sort_cost::nat ⇒ real where

merge_sort_cost(0) = 0

| merge_sort_cost(1) = 1

| n ≥ 2 �⇒ merge_sort_cost(n) =
merge_sort_cost(�n/2�) + merge_sort_cost(�n/2) + n

The termination of this function can be proven using the akra_bazzi_termination
method. In this case, it produces ten proof obligations of the form 0 < 1

2 ,
1
2 < 1, 0 ≤ 1

2 · 2,
etc. These can be solved automatically with the simplifier.

It should be noted that akra_bazzi_termination works in more complicated situ-
ations as well, e. g. when the function has several arguments (curried or tupled), which may
even change during the recursive call.

In order to achieve this, akra_bazzi_termination performs some analysis of the
function’s type to find a parameter that is a natural number and for which the recursive calls
are Akra–Bazzi terms. It then starts a termination proof using this parameter as a termination
measure and applies the corresponding introduction rules for Akra–Bazzi terms, which leaves
only the simple proof obligations we saw earlier.

123

502 M. Eberl

Note also that akra_bazzi_termination is completely independent from theAkra–
Bazzi theorem itself; its only connection to Akra–Bazzi is the fact that it helps automate
termination proofs of Akra–Bazzi-style recurrences.

8.3 Master_Theorem

The main proof method is master_theorem, which can be invoked on goals of the form
f ∈ O(_) or f ∈ Θ(_). It takes as an argument the applicable case of the Master Theorem
(e. g. 1 or 2.2) and applies it to the goal. The recursive equation of f and the values x0 and
x1 are optional parameters which the method attempts to guess if absent. The appropriate
values for k, as, bs, ts, and g are always inferred automatically from the recursive equation,
provided the required akra_bazzi_term_intro rules exist.
To provide some more detail as to where all these values come from:

– The function f can obviously be determined from the goal itself.
– If not provided explicitly, the method will try to obtain the recursive equation for f from

its definition.
– p, the characteristic number of the recurrence, never needs to be specified explicitly. If

it appears in the goal, the proof method infers it from the goal; if it does not appear in
the goal, its value is not required explicitly – if there is e. g. a proof obligation that some
number q is larger than p, the user is presented with the equivalent proof obligation that∑k

i=1 ai · bq
i < 1.

– x0 is set to 0 if not given explicitly, which is always a correct choice except in the unusual
case that f is negative for some inputs.

– x1 is determined from the precondition of the recursive equation (e. g. 2 for the precon-
dition n > 1).

– k, as and ts are determined by partitioning the right-hand side of the recursive equation
into summands and bringing each summand into the form ai · f (tsi n) if possible.

– g is the sum of all summands that cannot be brought into this form.
– for each t ∈ ts, the corresponding b ∈ bs is determined by finding a rule from the

theorem collection akra_bazzi_term_intro that matches t and extracting b from
the unifier.

We will now illustrate the practical application of the proof method with two examples.

Example: Merge Sort As an example, we consider the merge_sort_cost function from
Section 8.2. Case 2.3 of the Master Theorem tells us that the growth of this function is
Θ(n ln n). In Isabelle, we write:

lemma merge_sort_cost ∈ Θ(λn. n · ln n)

apply (master_theorem 2.3)

This leaves us with the following proof obligations:

1. ∀n. 0 ≤ n �⇒ n < 2 �⇒ 0 ≤ merge_sort_cost n
2. ∀n. 2 ≤ n �⇒ merge_sort_cost(n) = n + merge_sort_cost(�n/2�) +

merge_sort_cost(�n/2)
3. ∀n. 2 ≤ n �⇒ 0 ≤ n
4. (λn. n) ∈ Θ(λn. n)

The first goal, non-negativity of merge_sort_cost, can be proven easily by case distinction
using the function definition. All the remaining goals can be discharged automatically by the
simplifier.

123

Proving Divide and Conquer Complexities in Isabelle/HOL 503

Example: Boncelet coding Another interesting example is given byDrmota and Szpankowski
[8]: the average phrase length d(n) in Boncelet coding [6]. This is not related to Divide and
Conquer algorithms at all, but d does fulfil the Akra–Bazzi-type recurrence

d(n) = 1 + p · d(�p · n + δ�) + q · d(�q · n − δ�)
where p ∈ (0; 1) is a probability, q = 1 − p , and δ > 0 , δ < 1 , 2p + δ < 2. Since our
Master Theorem applies to this recurrence, we can use the master_theorem tactic:

lemma boncelet_phrase_length:

fixes p δ::real
fixes d::nat ⇒ real

defines q ≡ 1 − p

assumes p ∈ (0; 1) and δ ∈ (0; 1) and 2 · p + δ < 2 and ∀n. d(n) ≥ 0

assumes ∀n≥2. d(n) = 1 + p · d(�p · n + δ�) + q · d(�q · n + δ�)
shows d ∈ Θ(λx . ln x)

using assms by (master_theorem recursion: d_rec, simp_all)

This example is particularly interesting because here we do not have a concrete function that
we defined ourselves, but prove a theorem for an entire class of functions satisfying a certain
recurrence. Since d is not a function-package function, we need to give master_theorem
the recurrence rule to use, but then, the lemma can be proven automatically again. Note also
that we did not specify which case to use here; Isabelle implicitly backtracks over all possible
cases and succeeds in case 2.3. It should, however, be mentioned that the Θ-estimate is not
very useful in this case: as Drmota and Szpankowski elaborate, an analysis of the redundancy
of the Boncelet scheme requires more precise asymptotics, like the ones they provide.

Further examples of complexity proofs for recurrences derived from the computational
costs of Divide and Conquer algorithms such as Karatsuba’s multiplication algorithm for
natural numbers, Strassen’s algorithm for matrix multiplication, or the deterministicMedian-
of-Medians selection algorithm can be found in the examples file of our entry in the
Archive of Formal Proofs [9].All examples can be proven mostly automatically with the
master_theorem method and Isabelle’s simplifier. (in no small part thanks to the deci-
sion procedure we presented in Sect. 3.2.2) There are only three kinds of subgoals that are
sometimes left behind:

– Positivity/non-negativity for sufficiently large inputs; this can typically be shown by
straightforward induction and simplification.

– Showing that p satisfies
∑k

i=1 asi · bsp
i = 1; proving this is usually automatic, but can

be non-trivial in some cases. One such example is that from our introduction: f (n) =
f (�n/4�) + f (�n/2�) + 1 with p = log2 ϕ, where ϕ is the golden ratio.

– Inequalities like q < p for complicated constants p, q (e. g. involving logarithms and
square roots); these can usually be proven automatically by approximation [12].

8.4 Akra_Bazzi_Approximation

In some of the cases of the Master Theorem, the goal contains the parameter p. As shown
before, this p always exists and is unique. It can, however, not always be expressed in a closed
form. One example for such a situation is the function f (x) = f (�x/3�) + f (�3x/4�), for
which p seems to have no closed form, but can be approximated to 1.152.

123

504 M. Eberl

Our Master Theorem in Isabelle/HOL yields

lemma f ∈ Θ
(
λn. nakra_bazzi_exponent([1,1],[1/3,3/4]))

where akra_bazzi_exponent is a function that, given lists as and bs that fulfil the usual
conditions, returns the unique p such that

∑k
i=1 asi · bsp

i = 1.
Of course, one would now like to obtain and verify at least an approximate value for

this exponent. An approximate value for p can be found e. g. using an external com-
puter algebra system or by applying Newton’s method as described in Sect. 8.4. Once
such an approximation has been found, it can then be verified with our proof method
akra_bazzi_approximate:

lemma akra_bazzi_exponent([1, 1], [1/3, 3/4]) ∈ [1.1519623; 1.1519624]
by (akra_bazzi_approximate 29)

This proof method internally uses the approximation tactic [12], which uses Taylor
series expansions, interval arithmetic, and reflection (i. e. Isabelle’s code generator [11])
to certify bounds on the values of certain transcendental functions. The number 29 in the
invocation here indicates the precision (measured in binary digits) of the computation. If it
is too low, the proof attempt might fail even though the statement is true; if it is too high, the
proof will take more time. The user of the proof method should therefore find a precision
value that is as low as possible while still being high enough for the proof to succeed.

Likeakra_bazzi_termination, themethodakra_bazzi_approximation is
completely orthogonal to theAkra–Bazzi theorem; neither depends on the other. In particular,
no part of the proof of the Akra–Bazzi theorem relies on numerical approximation.

Approximating p As a side note: p can be approximated quite easily. Recall that p was
defined as the unique real number such that t (p) = 1 where

t : R → R>0, x �→
k∑

i=1

ai · b x
i .

Note that t (x) − 1 is convex and t ′(x) has no zeros. This means that Newton’s method
can be used to approximate p very efficiently: Due to the convexity of t (x) − 1, a Newton
step at any lower bound (i. e. intersecting the tangent of t at the lower bound with the x axis)
will yield a better lower bound, and intersecting the secant of a lower bound and an upper
bound on p with the x axis will yield a better upper bound. This can be used to obtain good
approximation intervals for p very quickly.

As initial lower and upper bounds, one can e. g. use the estimates

− ln ak

ln bk
≤ p ≤ − ln

(
n · maxi∈[1;n] ai

)

ln
(
maxi∈[1;n] bi

) where k ∈ [1; n] arbitrary.

We have not verified this approximation algorithm in Isabelle, since the approximation
can easily be done externally in an unverified way and then certified using e. g. the akra_
bazzi_approximation method.

123

Proving Divide and Conquer Complexities in Isabelle/HOL 505

9 Comparison with Similar Theorems

9.1 Leighton’s Akra–Bazzi Theorem

Our version of the Akra–Bazzi theorem differs from Leighton’s [14] in a few minor respects:

– We require only one ai to be positive and the rest to be non-negative. In Leighton’s
version, all of them must be positive.

– Every property that we require to hold between x0 and x1, Leighton requires to hold
between 1 and x0. (which corresponds to our x1)

– We have two separate functions g and ḡ, where the latter is an integrable asymptotic
bound for the former. Leighton essentially requires g and ḡ to be the same.

– We have not only a Θ version of the Akra–Bazzi theorem, but also O and � versions,
which may be useful when the behaviour of g is not fully known.

9.2 Master Theorem

Due to its being derived from the Akra–Bazzi theorem, our version of the Master Theorem
is much more general than the versions of the Master Theorem that are typically presented
in the literature (e. g. Introduction to Algorithms [7]). Our version of the Master Theorem
imposes far fewer restrictions on the shape of the recursive call, allowing multiple terms with
floors, ceilings, and other deviations.

Apart from the more general recursion scheme that our version of the Master Theorem
allows, there are two more differences to the version of the Master Theorem given by Cor-
men et al. [7]:

The second case of our version of the Master Theorem is more general, as it allows
arbitrary real numbers q whereas the version by Cormen et al. require q ≥ 0.6

The third case is more restrictive than that by Cormen et al.: we demand g ∈ Θ(xq),
whereas Cormen et al. only demand g ∈ �(xq) and the existence of some c < 1 such that
for all sufficiently large x , the regularity condition a · g(x/b) ≤ c · g(x) holds. For a more
complex recursion scheme, as allowed by our Master Theorem, this regularity condition
would be so complicated that it would be very inconvenient:

k∑

i=1

ai · g(bi · x + hi (x)) ≤ c · g(x)

Given such a regularity condition, the proof that f is then in Θ(g) is relatively simple and
does not require the Akra–Bazzi theorem at all, which is why we did not include this in our
proof.

It should also be noted that while most informal proofs of the Master Theorem mention
that rounding before the recursive call does not change the result, this is seldom proven
concisely. Cormen et al. give a partial proof that their Master Theorem also holds for f (x) =
a · f (�x/b�) + g(x) and f (x) = a · f (�x/b) + g(x), but they do not address the case
f (x) = a1 · f (�x/b�) + a2 · f (�x/b) + g(x). This is unfortunate, because even simple
Divide andConquer algorithms such asMerge Sort have cost recurrences of this kind. Ad-hoc
arguments using monotonicity can be made for concrete examples such as Merge Sort, but
it is convenient to handle all of these deviations with a unified theorem like the Akra–Bazzi
theorem.

6 The Master Theorem presented in the book actually demands q = 0, but Exercise 4.2–2 is a generalisation
to q ≥ 0.

123

506 M. Eberl

10 Conclusion

We formally verified a very general version of the Akra–Bazzi method [1] with the theorem
prover Isabelle/HOL. This enables users of Isabelle to obtain verified asymptotic bounds for
many typical ‘Divide and Conquer’ recurrence relations. In the process of our formalisation,
we found a missing case in Leighton’s original proof [14]. We also clarified some important
parts of the proof that Leighton does not address (such as the asymptotic inequalities and
lifting the estimate for continuous recurrences to discrete ones) and slightly generalised the
theorem.

Based upon our formal proof of the Akra–Bazzi method, we also proved a generalisation
of the well-known Master Theorem whose generality is somewhere between the ‘classic’
Master Theorem and the Akra–Bazzi method, but with no additional cost compared to the
‘classic’ Master Theorem. In particular, we thus accounted rigorously for any rounding in
the recursive calls, which is often neglected in informal proofs of the Master Theorem.

Additionally, we developed some automated proof methods that facilitate defining such
recursive functions and working with our Master Theorem. We evaluated this machinery on
some standard textbook examples of Divide and Conquer algorithms (Merge Sort, Karatsuba
multiplication, deterministic Median-of-Medians selection) and found that the complexity
proofs were almost completely automatic.

Acknowledgements Tobias Nipkow and Johannes Hölzl commented on an early draft of this work. Louay
Bazzi made a very helpful suggestion that allowed us to fix the missing case in Leighton’s proof. We also
thank the anonymous reviewers for their helpful suggestions and insightful questions.

Appendix: The Class of Admissible Integrals

We will now provide a proof of our claim from Sect. 3.3 that any admissible integral must
coincide with the Riemann integral for all piecewise-continuous functions. First of all, we
shall state again what admissibility means formally: Consider an integral notion I. Formally,
I consists of

– A functional I : RR × R
2 → R that maps a function f and interval bounds a and b to

the I-integral of f from a to b, denoted by
∫ b

a
I

f (x) dx .

– A set I ⊆ R
R × R

2, the set of I-integrable functions. We say that f is I-integrable on
[a; b] if (f, a, b) ∈ I.

For the remainder of this section, we will always indicate for every use of the integral sign
which notion of integration is meant by writing the name of the integral underneath the
integral as we did above.

Now assume that I fulfils the following four properties (which are the same that were
stated in Sect. 3.3, but more formally):

∀a, b, c ∈ R. a ≤ b ∧ c ≥ 0 −→ ((λ x . c), a, b) ∈ I ∧
∫ b

a
I

cdx = c · (a − b) (9)

∀a, b, a′, b′ ∈ R. ∀ f ∈ R
R. a ≤ a′ ≤ b′ ≤ b ∧ (f, a, b) ∈ I −→ (f, a′, b′) ∈ I (10)

123

Proving Divide and Conquer Complexities in Isabelle/HOL 507

∀a, b ∈ R. ∀ f, g ∈ R
R. (f, a, b) ∈ I ∧ (g, a, b) ∈ I ∧ (∀x ∈ [a; b]. f (x) ≤ g(x))

−→
∫ b

a
I

f (x) dx ≤
∫ b

a
I

g(x) dx (11)

∀a, b, c ∈ R. ∀ f ∈ R
R. a ≤ b ≤ c ∧ (f, a, c) ∈ I

−→
∫ c

a
I

f (x) dx =
∫ b

a
I

f (x) dx +
∫ c

b
I

f (x) dx (12)

To show that the I-integral of a non-negative function f over [a; b] coincides with the
Riemann integral if f is both I-integrable and piecewise-continuous on [a; b], we recall that
the Riemann integral is equivalent to the Darboux integral. The Darboux integral is defined
as the supremum L f of the lower Darboux sums L f,P and the infimum U f of the upper
Darboux sums U f,P over all subdivisions P = (c0 . . . cn) of the interval [a; b] whenever L f

and U f are equal. Formally:

∫ b

a
Darboux

f (x) dx :=L f = U f (if L f = U f)

where

L f = sup
P

L f,P = sup
P

n−1∑

i=0

(ci+1 − ci) inf
x∈[ci ; ci+1]

f (x) and U f = inf
P

U f,P

= inf
P

n−1∑

i=0

(ci+1 − ci) sup
x∈[ci ; ci+1]

f (x)

Suppose f is non-negative, continuous, and I-integrable on [a; b]. For any subdivision
P = (c0 . . . cn) of the interval [a; b], we can use (11) and (12) to split up the I-integral over
[a; b]:

∫ b

a
I

f (x) dx =
n−1∑

i=0

∫ ci+1

ci
I

f (x) dx

Using this together with the monotonicity and constant-interval property of I, we have:

L f,P
def=

n−1∑

i=0

(ci+1 − ci) inf
x∈[ci ; ci+1]

f (x)
(9)=

n−1∑

i=0

∫ ci+1

ci
I

inf
x∈[ci ; ci+1]

f (x) dx
(11)≤

n−1∑

i=0

∫ ci+1

ci
I

f (x) dx

︸ ︷︷ ︸
= ∫ b

a
I

f (x) dx

(11)≤

≤
n−1∑

i=0

∫ ci+1

ci
I

sup
x∈[ci ; ci+1]

f (x)
(9)=

n−1∑

i=0

(ci+1 − ci) sup
x∈[ci ; ci+1]

f (x)
def= U f,P

Therefore, the I-integral lies between all lower and upper Darboux sums. Since f is con-
tinuous, f is also Darboux-integrable, and therefore the supremum of the lower Darboux
sums and the infimum of the upper Darboux sums are the same. Since the I-integral lies

123

508 M. Eberl

inbetween, we have:
∫ b

a
Darboux

f (x) dx
def= L f = U f =

n−1∑

i=0

∫ ci+1

ci
I

f (x) dx =
∫ b

a
I

f (x) dx .

We have therefore shown that I coincides with the Riemann integral on all continuous non-
negative functions. Since we can split the I-integral of a piecewise-continuous function
into a sum of I-integrals of continuous functions, this extends to all piecewise-continuous
non-negative functions.

However, this result does not extend to more general notions of integrals and integrability:
For example, let us consider the following integral I: A function is I-integrable if it is a
constant function or if it is [Q] = (λ x . if x ∈ Q then 1 else 0), the indicator function of the
rational numbers. The value of the integral is defined as

∫ b

a
I

c dx :=c · (b − a) and
∫ b

a
I

[Q] dx :=b − a

Then I fulfils all four properties, but unlike the Lebesgue/Bochner/Henstock–Kurzweil inte-
gral, the I-integral of [Q] is non-zero on all non-empty intervals.

References

1. Akra,M., Bazzi, L.: On the solution of linear recurrence equations. Comput. Optim. Appl. 10(2), 195–210
(1998). doi:10.1023/A:1018373005182

2. Avigad, J., Donnelly, K.: Formalizing O notation in Isabelle/HOL. In: Basin, D., Rusinowitch, M. (eds.)
Automated Reasoning, Lecture Notes in Computer Science, pp. 357–371. Springer, Berlin (2004). doi:10.
1007/978-3-540-25984-8_27

3. Avigad, J., Hölzl, J., Serafin, L.: A formally verified proof of the central limit theorem. CoRR
abs/1405.7012 (2014). Presented at the Isabelle Workshop 2014

4. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Reason. 52(2), 123–153
(2014). doi:10.1007/s10817-013-9284-7

5. Bazzi, L., Mitter, S.K.: The solution of linear probabilistic recurrence relations. Algorithmica 36(1),
41–57 (2003). doi:10.1007/s00453-002-1003-4

6. Boncelet Jr., C.G.: Block arithmetic coding for source compression. IEEE Trans. Inf. Theory 39(5),
1546–1554 (1993). doi:10.1109/18.259639

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 4th printing, 3rd edn.
The MIT Press, Cambridge (2009)

8. Drmota, M., Szpankowski, W.: A Master theorem for discrete divide and conquer recurrences. J. ACM
60(3), 16:1–16:49 (2013). doi:10.1145/2487241.2487242

9. Eberl, M.: The Akra–Bazzi Theorem and the Master Theorem. Archive of Formal Proofs (2015). http://
www.isa-afp.org/entries/Akra_Bazzi.shtml, Formal proof development

10. Eberl, M.: Landau Symbols. Archive of Formal Proofs (2015). http://www.isa-afp.org/entries/Landau_
Symbols.shtml, Formal proof development

11. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume, M., Kobayashi,
N., Vidal, G. (eds.) Functional and Logic Programming. Lecture Notes in Computer Science, vol. 6009,
pp. 103–117. Springer, Berlin (2010). doi:10.1007/978-3-642-12251-4_9

12. Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In: Reis, G.D., Théry, L.
(eds.) Proceedings of the ACM SIGSAM 2009 International Workshop on Programming Languages for
Mechanized Mathematics Systems (PLMMS’09), pp. 38–45. Munich (2009)

13. Krauss, A.: Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. Ph.D. the-
sis, Technische Universität München, Institut für Informatik (2009). http://nbn-resolving.de/urn/resolver.
pl?urn:nbn:de:bvb:91-diss-20090722-681651-1-1

14. Leighton, T.: Notes on Better Master Theorems for Divide-and-Conquer Recurrences (1996). http://
courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf

123

http://dx.doi.org/10.1023/A:1018373005182
http://dx.doi.org/10.1007/978-3-540-25984-8_27
http://dx.doi.org/10.1007/978-3-540-25984-8_27
http://dx.doi.org/10.1007/s10817-013-9284-7
http://dx.doi.org/10.1007/s00453-002-1003-4
http://dx.doi.org/10.1109/18.259639
http://dx.doi.org/10.1145/2487241.2487242
http://www.isa-afp.org/entries/Akra_Bazzi.shtml
http://www.isa-afp.org/entries/Akra_Bazzi.shtml
http://www.isa-afp.org/entries/Landau_Symbols.shtml
http://www.isa-afp.org/entries/Landau_Symbols.shtml
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20090722-681651-1-1
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20090722-681651-1-1
http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf

C Analytic Number Theory

This chapter was originally published as an article in the proceedings of a peer-reviewed
conference:

M. Eberl.
Nine Chapters of Analytic Number Theory in Isabelle/HOL.
In Interactive Theorem Proving. Leibniz International Proceedings in Informatics, 2019.
DOI: 10.4230/LIPIcs.ITP.2019.16.

I am the sole author of this article, thus all contributions are mine.

Synopsis: This work consists of a formalisation of many basic concepts from the mathem-
atical eld of Analytic Number Theory (including Dirichlet series, character theory, and the
Riemann Z function). It then uses this as a basis for the formal proofs of some important the-
orems, such as the Prime Number Theorem and Dirichlet’s Theorem. It covers most of Apostol’s
classic textbook Analytic Number Theory [3], sometimes going beyond the scope of the book.

This article is an open access publication and was published under a Creative Commons CC-BY
licence; it can therefore be redistributed freely. It is reproduced on the following pages in its
published form.

99

http://dx.doi.org/10.4230/LIPIcs.ITP.2019.16

Nine Chapters of Analytic Number Theory in
Isabelle/HOL
Manuel Eberl
Technical University of Munich, Boltzmannstraße 3, Garching bei München, Germany
https://www21.in.tum.de/~eberlm
manuel.eberl@tum.de

Abstract
In this paper, I present a formalisation of a large portion of Apostol’s Introduction to Analytic
Number Theory in Isabelle/HOL. Of the 14 chapters in the book, the content of 9 has been mostly
formalised, while the content of 3 others was already mostly available in Isabelle before.

The most interesting results that were formalised are:
The Riemann and Hurwitz ζ functions and the Dirichlet L functions
Dirichlet’s theorem on primes in arithmetic progressions
An analytic proof of the Prime Number Theorem
The asymptotics of arithmetical functions such as the prime ω function, the divisor count σ0(n),
and Euler’s totient function ϕ(n)

2012 ACM Subject Classification Mathematics of computing → Mathematical analysis

Keywords and phrases Isabelle, theorem proving, analytic number theory, number theory, arith-
metical function, Dirichlet series, prime number theorem, Dirichlet’s theorem, zeta function, L
functions

Digital Object Identifier 10.4230/LIPIcs.ITP.2019.16

Supplement Material The proof developments in the Archive of Formal Proofs (AFP) that this
work refers to are listed in the bibliography. Additionally, a precise overview of what material from
the book has been formalised and which theorems in the book correspond to which theorems in the
formalisation can be found at 10.5281/zenodo.3262266.

Funding This work was supported by DFG grant NI 491/16-1. Part of it was conducted during a
research visit in collaboration with the ALEXANDRIA project (ERC grant 742178).

Acknowledgements I would like to thank John Harrison for doing all the incredibly hard work of
creating an extensive library of complex analysis in HOL Light – the first of its kind – and Larry
Paulson and Wenda Li for porting it to Isabelle/HOL and extending it even further. Without these
efforts, my work would not have been possible. Larry Paulson also started off the analytic proof
of the Prime Number Theorem in Isabelle and allowed me to take over and replace it with a more
high-level approach. I also thank Jeremy Avigad and Johannes Hölzl, who commented on a draft of
this document, and the anonymous reviewers, who gave a number of helpful suggestions.

1 Introduction

The formalisation of Apostol’s book in Isabelle/HOL started from the simple desire to have
more properties about Euler’s ϕ function available in the system. However, Apostol’s style
turned out to be very amenable to formalisation, and the subject matter was both of great
interest as a basis for further development of number theory in Isabelle and as a case study
for Isabelle’s libraries on asymptotics and complex analysis. After 1.5 years of a highly
part-time one-person effort, most of the book (and quite a bit of material that goes beyond
the book) has been formalised:

© Manuel Eberl;
licensed under Creative Commons License CC-BY

10th International Conference on Interactive Theorem Proving (ITP 2019).
Editors: John Harrison, John O’Leary, and Andrew Tolmach; Article No. 16; pp. 16:1–16:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4263-6571
https://www21.in.tum.de/~eberlm
mailto:manuel.eberl@tum.de
https://doi.org/10.4230/LIPIcs.ITP.2019.16
https://doi.org/10.5281/zenodo.3262266
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Nine Chapters of Analytic Number Theory in Isabelle/HOL

Chapters 1, 5, and 9 consist of fairly basic material (e. g. GCDs, congruences, Quadratic
reciprocity), most of which was already available in the Isabelle/HOL library.
The results from Chapters 2, 3, 4, and 6 have been formalised in their entirety.
Chapters 10, 11, and 12 have been formalised with some omissions.
For Chapters 7 and 13 (Dirichlet’s Theorem and PNT), equivalent results have been
formalised using a different approach.
Chapters 8 and 14 have been skipped. The former is being actively worked on; the latter
concerns number partitions and has little connection to the other material in the book.
Various interesting results from other sources (e. g. Hildebrand’s lecture notes [21]) that
are not proven in Apostol’s book have also been formalised.

For more precise information on this, see the supplementary material listed before.
I put particular focus on developing a usable library of Dirichlet series on one hand and

concrete results about the distribution of primes on the other. As the development is much
too large to be presented here in full, I will go through a high-level description of some of
the most interesting material. Special attention will be given to parts where I encountered
difficulties or chose a different route than Apostol did in his book. Proofs will only be given
in the form of very brief sketches, e. g. when it is necessary in order to understand difficulties
in formalising them. I would like to refer readers who are interested in the actual proofs either
to my commented formalisation in the Archive of Formal Proofs (AFP) [13, 12, 15, 18, 16] or
to the numerous excellent textbooks and lecture notes on the subject [2, 21, 7]. I chose not to
show Isabelle code in this presentation since the main results are very close to mathematical
notation (e. g. Re s ≥ 1 =⇒ s 6= 1 =⇒ zeta s 6= 0) and showing the Isabelle code would
therefore not provide much additional insight.

Let me now give an outline of the sections to follow: Section 2 lists related work. Section 3
defines formal Dirichlet series and their connection to complex-analytic functions. Section 4
introduces multiplicative characters and Dirichlet characters. Section 5 builds on the Dirichlet
series library to treat various L functions, such as the famous Riemann ζ function. Section 6
describes my formalisation of the Prime Number Theorem (PNT). Section 7 gives some more
examples of interesting results that were formalised. Section 8 gives an overview of the size of
various parts of my formalisation and the effort involved in creating it. Lastly, in Section 9,
some conclusions are drawn from this project.
I Remark 1. Any sum

∑
p or product

∏
p is to be understood to run over prime p only.

2 Related Work

The first formalisation of a result related to this work was that of the PNT in Isabelle/HOL
by Avigad et al. [5] in 2007. They formalised the elementary Selberg–Erdős proof.1 Carneiro
formalised the same proof in Metamath [11].

Harrison developed the first (and until now only) formalisation of an analytic proof of the
PNT in 3,600 lines [20] of HOL Light. He followed Newman’s presentation, which I also did.2

1 Unfortunately, this work was never submitted to the AFP and has not been maintained since then. At
the time of writing this paper, the proofs are 12 years old; the formalisation comprises almost 27,000
lines, and many of them are unstructured proof scripts. Bringing them up to date to work with a
modern version of Isabelle would be a massive undertaking. However, much of the more general material
developed by Avigad et al. was moved to Isabelle’s library, and for a considerable part of the remaining
material, equivalent results are now already a part of the Isabelle library or my work anyway.

2 Paulson later ported Harrison’s development to Isabelle/HOL, but the ported proofs were lengthy and
not very readable, so he and I decided that it would be better to redo them in a more high-level style,
which I did. Only a few small lemmas were kept.

M. Eberl 16:3

Harrison also proved Dirichlet’s Theorem [19] and I used some of the high-level structure of
his development as an inspiration for mine. Moreover, formalisations of Bertrand’s postulate
exist by Harrison in HOL Light, by Théry in Coq [27], by Riccardi in Mizar [26], by Carneiro
in Metamath [10], by Asperti and Ricciotti in Matita [4], and by Biendarra and Eberl in
Isabelle/HOL [9].

The big difference between these formalisations and the present one is that this one
contains not just one result and the material required for it, but the majority of a textbook
on the subject. Many proofs are much simpler and more “high-level” through the use of
Dirichlet series and Isabelle’s advanced machinery for asymptotic reasoning.

3 Dirichlet Series

The central objects in analytic number theory are Dirichlet series. These are the main tools
that set apart my approach to formalised number theory from that of previous formalisation
work in multiplicative number theory like that by Avigad et al., Harrison, and Carneiro.

I Definition 2 (Formal Dirichlet series). A formal series of the form f(s) =
∑∞
n=1 ann

−s is
called a Dirichlet series. Typically, the an are real or complex (we will mostly look at the
complex case). The Dirichlet series over R or C form a commutative ring with the obvious
choices for 0, 1, and addition. Multiplication is defined as (

∑∞
n=1 ann

−s) · (∑∞n=1 bnn
−s) =∑∞

n=1(
∑
k·l=n akbl)n−s . Also,

∑∞
n=1 ann

−s has a multiplicative inverse iff a1 6= 0.

I Theorem 3 (Convergence of Dirichlet series). Each Dirichlet series has abscissæ of con-
vergence σc and absolute convergence σa such that the infinite sum corresponding to it is
absolutely summable for Re(s) > σa, conditionally summable for Re(s) ∈ (σc, σa), and
divergent for Re(s) < σc (where Re(s) denotes the real part of s). The σc and σa satisfy
σc ≤ σa ≤ σc + 1 and may be ±∞.

Much like formal power series (i. e. ordinary generating functions) for combinatorics,
Dirichlet series are closely associated with number theory. Like generating functions, they
are of great interest as mere formal objects, but when they converge, their interpretation as
a complex-valued function is also enormously useful, as we will see.

Various formal analogues of analytic operations can be defined for Dirichlet series e. g.
reciprocal, derivative, integral, exp(f(s)), ln f(s), f(s+ s0), f(m · s), and subseries. These
have similar properties to their analytic counterparts (e. g. exp(f(s))′ = f ′(s) exp(f(s))) even
when they do not converge. When they do converge, they typically agree with their analytic
counterparts. This allows one to prove properties of the analytic functions by reasoning on
the formal level and vice versa.

There are 4,800 lines of material on formal Dirichlet series in my formalisation. This is
far too much to show here, so I simply say that it contains all of Chapter 11 in Apostol’s
book and more, except for Sections 11.10 and 11.11. I will only show a few small examples
that illustrate the aforementioned interplay of the formal and the analytical level:

One example of using formal Dirichlet series to derive an analytic result is this:

I Theorem 4. Let ω(n) be the number of distinct prime factors of n and µ(n) the Möbius µ
function, i. e. (−1)ω(n) if n is square-free and 0 otherwise. Then

∑∞
n=1 µ(n)/n2 = 6/π2 .

Proof. Consider the formal series ζ(s) :=
∑∞
n=1 n

−s and M(s) :=
∑∞
n=1 µ(n)n−s. It is clear

that they both converge absolutely for Re(s) > 1 by the comparison test. It is easy to show∑
d|n µ(d) = [n = 1], i. e. ζ(s)M(s) = 1 holds formally [2]. Thus, it also holds analytically

for Re(s) > 1 so that we have ζ(2)M(2) = 1 and therefore M(2) = 1/ζ(2), where ζ(2) – the
famous Basel problem – has the well-known value π2/6 [6]. J

ITP 2019

16:4 Nine Chapters of Analytic Number Theory in Isabelle/HOL

The following theorem allows us to transfer an analytic equality to the formal level:

I Theorem 5 (Uniqueness of Dirichlet series). Let f(s), g(s) be two formal Dirichlet series
whose abscissa of convergence is <∞. If there exists a sequence sk with Re(sk) −→∞ and
∀k. f(sk) = g(sk), then f(s) and g(s) are equal as formal Dirichlet series.

I Remark 6. In Isabelle, the condition on the existence of the sequence sk is replaced by the
following equivalent and more concise formulation using filters [22]:

∃F s in Re going-to at-top. f(s) = g(s)

The filter “f going-to F ” is the contravariant image of F under f , i. e. “Re going-to at-top”
describes the neighbourhood of complex numbers with “sufficiently large” real part.

The “∃F x in F. P (x)” notation stands for “P (x) holds frequently in F ”, i. e. the comple-
ment of P is not in the filter F . Less formally, one could say that P (x) holds “again and
again”. In the case of “Re going-to at-top”, this means that for any C ∈ R, there exists an
s with Re(s) ≥ C for which the property is fulfilled.

I Definition 7 (Truncation operator). For a Dirichlet series f(s) =
∑∞
n=1 ann

−s, let
Tm(f(s)) =

∑m
n=1 ann

−s denote the m-th order truncation of f(s). The result is a Di-
richlet polynomial, i. e. a Dirichlet series with only finitely many non-zero coefficients.

I Theorem 8. f(s) = g(s)←→ ∀m. Tm(f(s)) = Tm(g(s)).

The following is an instance where these theorems are used to avoid a lot of complicated
reasoning on the formal level by leveraging a result on the analytic level:

I Theorem 9. For any (not necessarily convergent) Dirichlet series f(s) and g(s), we have
exp(f(s) + g(s)) = exp(f(s)) exp(g(s)) .

Proof. It is clear that the result holds analytically whenever the series converge, so if the
series have a non-empty half-plane of convergence, they must be equal by Theorem 5. The
question is how to show this if we do not know whether the series converge anywhere.

The key is to use Theorem 8 together with Tm(exp(h(s))) = Tm(exp(Tm(h(s)))). This
allows us to assume w. l. o. g. that the series in question are Dirichlet polynomials and
therefore converge everywhere. J

I Remark 10. This technique of showing an equality on Dirichlet series by showing that
it holds for all Dirichlet polynomials works if the two sides of the equation in question are
continuous functions w. r. t. the topology on formal Dirichlet series, i. e. each coefficient of
the result only depends on finitely many coefficients of the input. The topological structure
of Dirichlet series was not formalised yet, but this is a useful fact to keep in mind.

The following is another important theorem connecting a series with the function it
defines that we will use later:

I Theorem 11 (Pringsheim–Landau). Let f(s) be a Dirichlet series with non-negative real
coefficients and σa 6= ±∞. Then f(s) has a singularity at σa.

Conversely, if f(s) has an an analytic continuation to some half-plane {s | Re(s) > c} ,
then σa ≤ c. In particular, if f(s) is entire, the series must converge everywhere.

M. Eberl 16:5

4 Characters of a Finite Abelian Group

The next concept we shall explore is that of a multiplicative character, which will be needed
to prove Dirichlet’s theorem. For this section, let G = (G, ·, 1) be a finite abelian group.

IDefinition 12 (Multiplicative character). A character is a group homomorphism χ : G→ C×,
i. e. χ(1) = 1 and χ(a · b) = χ(a)χ(b) for any a, b ∈ G. The character χ0 that maps every
element to 1 is called the principal character.

For the necessary group theory, I use the HOL-Algebra library by Ballarin, which models a
group as a record containing entries for the operation ·, the neutral element 1, and an explicit
carrier set (which does not have to be the full type universe). The latter is necessary in HOL
because notions such as subgroups cannot easily be expressed without explicit carrier sets.
The fact that such a record indeed describes a group is then formalised as a locale [8] called
group, which fixes such a record and assumes that all the usual group axioms hold.

A character can then be defined as a locale that extends the group locale by fixing a
function χ :: α → C (where α is the type of the group elements) and assuming that the
two homomorphism properties mentioned above hold for χ. For convenience, I only assume
χ(1) 6= 0 (from which χ(1) = 1 easily follows) and I additionally require χ(x) = 0 for any x
not in the carrier of the group. The latter is to ensure extensionality, i. e. two characters are
equal as HOL values iff they return the same result on every group element.

I Definition 13 (Pontryagin dual group). Denote the set of characters of G by Ĝ. Then Ĝ
forms a group Ĝ := (Ĝ, ·, χ0) with point-wise multiplication and χ0 as the identity. This
group is called the Pontryagin dual group of G.

I Theorem 14 (Number of characters). |Ĝ| = |G|

In Isabelle, the proof is by induction on the subgroups of G, using a custom induction rule
inspired by Apostol’s proof. The idea here is to successively “adjoin” elements, i. e. for a
subgroup H and some x ∈ G \H, we form 〈H;x〉, the subgroup generated by H ∪ {x}:

I Lemma 15 (Induction on a group). Let G = (G, ·, 1) be a group and H some subgroup of
G. Let P be some property on groups. If P (H) holds and P (H ′) implies P (〈H ′;x〉) for all
subgroups H ′ ⊇ H and all x ∈ G \H ′, then P (G) holds.

I use this to show a stronger version of Theorem 14 that is just as easy to show:

I Theorem 16 (Number of character extensions). Let H be a subgroup of G and χ ∈ Ĥ. Let

C(G) := {χ′ ∈ Ĝ | ∀x∈H. χ′(x) = χ(x)}

denote the set of characters on G that agree with χ on H. Then |C(G)| · |H| = |G| , i. e.
there are precisely |G|/|H| ways to extend a character on H to a character on G.

Proof. By straightforward induction according to Lemma 15, using the bijection

f : C(〈H ′;x〉) → C(H ′)× {z ∈ C | zn = 1}, f(χ) = (y 7→ χ(y), χ(x))

in the induction step. J

Theorem 14 follows directly by taking H = ({1}, ·, 1). Another useful corollary is this:

I Corollary 17. For any x 6= 1, there exists a χ ∈ Ĝ such that χ(x) 6= 1.

ITP 2019

16:6 Nine Chapters of Analytic Number Theory in Isabelle/HOL

With this, we can prove a nice property that Apostol does not cover at all:

I Theorem 18 (Isomorphism to the double dual). G is isomorphic to its double dual via the
natural isomorphism ν : G→ ̂̂G , ν(x) = (χ 7→ χ(x)) .

This isomorphism is useful for the next properties:

I Theorem 19 (Orthogonality relations). For any χ ∈ Ĝ resp. x ∈ G, we have:

∑

x∈G
χ(x) =

{
|G| if χ = χ0

0 otherwise
(1)

∑

χ∈Ĝ

χ(x) =
{
|G| if x = 1
0 otherwise

(2)

Apostol’s proof for (1) is very simple and straightforward to formalise. In order to show
(2) from (1), Apostol represents the set of characters of G as a character table of G, i. e. a
|G|×|G| complex matrix. If we denote this matrix by A, (1) shows that AA∗ = nI (where A∗
is the conjugate transpose of A). By simple linear algebra, A∗A = nI and thus (2) follows.

Formalising this argument would have required importing Isabelle’s linear algebra library
and doing some tedious work to relate the matrix to the characters, so I chose another route:
One could prove (2) relatively easily using the same induction principle as before in about 70
lines, but the easiest way is to simply use Pontryagin duality: (2) is, in fact, nothing but the
dual of (1), with Ĝ for G and ν(x) for χ. This requires only 6 lines of Isabelle code.

I Definition 20 (Dirichlet character). A Dirichlet character χ for the modulus m ∈ N>1 is
a character of the multiplicative group of the residue ring Z/mZ. For convenience, χ is
represented as a periodic function of type N→ C with period m, i. e. χ(k) = χ(k mod m).

I Remark 21. Apostol’s and my treatment of characters are quite elementary. There
is an alternative, more group-theoretic view on this: It is straightforward to show that
Ĝ1×G2 ' Ĝ1 × Ĝ2 and that Ĉn ' Cn for cyclic groups Cn. Together with the Fundamental
Theorem of Finite Abelian Groups, this implies a stronger variant of Theorem 14, namely
Ĝ ' G. However, unlike with ̂̂G ' G, the isomorphism is not natural and establishing it
indeed requires the Fundamental Theorem, which is currently not available in HOL-Algebra.
Since the formal proofs that were presented in this section are still reasonably short, I do not
think this is a big problem.

5 The L Functions

In this section, we will look at four functions from the class of L functions: Riemann’s ζ
function, Dirichlet’s L function, Hurwitz’s ζ function, and the periodic ζ function. These are
all complex-valued functions that are defined by an infinite sum for Re(s) > 1 and can be
analytically or meromorphically continued to the entire complex plane.

I Definition 22 (Riemann’s ζ function). For Re(s) > 1, the Riemann ζ function is given by
the Dirichlet series ζ(s) =

∑∞
n=1 n

−s .

I Definition 23 (Dirichlet L functions). Let χ be a Dirichlet character for the modulus m > 0.
Then L(s, χ) is given by the Dirichlet series L(s, χ) =

∑∞
n=1 χ(n)n−s for Re(s) > 1 if χ = χ0

and for Re(s) > 0 if χ 6= χ0.

We immediately get the following properties for free from the Dirichlet series library:

M. Eberl 16:7

I Theorem 24. Let Λ(n) denote the von Mangoldt function. Then, if Re(s) > 1:

ζ(s) =
∏

p

1
1− p−s ζ ′(s) = −

∞∑

n=1

lnn
ns

ln ζ(s) =
∞∑

n=2

Λ(n)
lnn · ns

L(s, χ) =
∏

p

1
1− χ(p)p−s L′(s, χ) = −

∞∑

n=1

χ(n) lnn
ns

lnL(s, χ) =
∞∑

n=2

χ(n)Λ(n)
lnn · ns

However, ζ(s) and L(s, χ) can be defined on a larger domain:

I Theorem 25 (Analytic continuation of ζ(s) and L(s, χ)).
1. ζ(s) can be continued to an analytic function on C \ {1} with a simple pole at s = 1.
2. For non-principal χ, L(s, χ) can be continued to an entire function.
3. For χ = χ0, we have L(s, χ0) = ζ(s) ·∏p|m(1− p−s) , i. e. L(s, χ0) is equal to ζ(s) up to

an entire factor and is therefore also analytic on C \ {1} with a simple pole at s = 1.

The difficult part here is to actually construct the analytic continuations. To do this
uniformly and without duplication of work, Newman uses a generalisation of ζ(s):

I Definition 26 (Hurwitz’s ζ function). Let a ∈ R>0 and Re(s) > 1. Then ζ(s, a) is given by
the (non-Dirichlet) series ζ(s, a) =

∑∞
n=0 (n+ a)−s .

Apostol only considers ζ(s, a) for a ∈ (0, 1] since some results only hold for a ≤ 1 and the
case of a > 1 can be reduced to a ∈ (0, 1]. It is, however, useful to allow also a ≥ 1 – e. g. in
Newman’s proof of the PNT, as noted already by Harrison [20].

B Claim 27. ζ(s, a) can be continued analytically to C \ {1} with a simple pole at s = 1.
Both Riemann’s ζ function and the Dirichlet L functions can easily be expressed in terms of
ζ(s, a), so that a continuation for Hurwitz’s ζ also yields continuations for the other two [2].

The main question now is therefore how to construct the continuation of ζ(s, a).

5.1 Analytic Continuation of Hurwitz’s ζ Function
Apostol constructs the continuation using an integral along an infinite contour. I did formalise
this eventually (see Theorem 36), but when I first defined ζ(s, a) in Isabelle, this approach
seemed quite daunting to me, so I chose another route that seems to be folklore [2, 24] and
that I discovered independently: Since ζ(s, a) is defined for Re(s) > 1 by an infinite sum∑∞
n=0(n+ a)−s and the corresponding improper integral

∫∞
0 (x+ a)−s dx is easy to compute,

the Euler–MacLaurin summation formula [14] suggests itself. Applying it, we obtain

∞∑

n=0
(s+ a)−n − a1−s

s− 1 = a−s

2 +
N∑

i=1

B2i
(2i)! a

−s−2i+1s2i−1 +

(−1)2Ns2N+1

(2N + 1)!

∫ ∞

0
P2N+1(t) · (t+ a)−s−2N−1 dt (3)

where sk denotes the rising factorial, Bk is the k-th Bernoulli number, and Pk(t) is the
periodic version of the Bernoulli polynomial Bk(t), i. e. Pk(t) = Bk(t− btc).

The right-hand side is now actually analytic on a larger domain: all terms except the last
one are clearly entire functions in s; the only non-obvious term is the integral in the last
summand. Leibniz’s rule shows that the definite integral

∫ b
0 is analytic in s, and an integral

version of the Weierstraß M -test then shows that the improper integral
∫∞

0 is uniformly
convergent and therefore analytic in s for Re(s) > −2N .

ITP 2019

16:8 Nine Chapters of Analytic Number Theory in Isabelle/HOL

Let us write prezetaN (s, a) for the right-hand side. This is then a function in s that is
analytic for Re(s) > −2N and that also fulfils

prezetaN (s, a) =
∞∑

n=0
(s+ a)−n − a1−s

s− 1 for Re(s) > 1 .

This means that two functions prezetaM and prezetaN will always agree on Re(s) > 1, and
by analytic continuation they will then also agree on their entire domain, i. e. for all s with
Re(s) > −2max(M,N). We can therefore define a full analytic continuation to all of C by
choosing N “big enough” for each input, i. e. we define:

prezeta(s, a) := prezetamax(0,1−dRe(s)/2e)(s, a)

This function is entire and agrees with any of the prezetaN (s, a) for all s with Re(s) > −2N .
Thus, it is an analytic continuation of the left-hand side of (3) so that we can simply define

ζ(s, a) := prezeta(s, a) + a1−s

s− 1

to obtain the Hurwitz ζ function on all of C \ {1}. For convenience, I choose ζ(1, a) = 0 as is
often done in HOL-based systems (cf. Γ(−n) for n ∈ N in Isabelle/HOL and HOL Light).
The advantage of the Euler–MacLaurin approach is that it is simple to implement because
all of the “heavy lifting” has already been done in the AFP entry on the Euler–MacLaurin
formula.

Various basic properties of the Hurwitz and Riemann ζ functions then follow in a
straightforward way, of which I show some notable ones here:

I Theorem 28 (Special values of ζ). For any n ∈ N≥0, we have:

ζ(a,−n) = −Bn+1(a)
n+ 1 ζ(−n) = −Bn+1

n+ 1 ζ(2n) = (−1)n+1 ·B2n · (2π)2n

2(2n)!

where Bn = Bn(1) are the Bernoulli numbers with B1 = 1
2 . In particular, this implies the

famous ζ(−1) = − 1
12 and the Basel problem ζ(2) = π2/6.

I Theorem 29 (Integral representation for ζ(s, a)). For any s with Re(s) > 1, we have:

Γ(s)ζ(s, a) =
∫ ∞

0

ts−1e−at

1− e−t dt

5.2 The Non-Vanishing of ζ(s) and L(s, χ) for Re(s) = 1
The following is a core ingredient in the Prime Number Theorem and Dirichlet’s Theorem:

I Theorem 30. For any s with Re(s) ≥ 1, we have ζ(s) 6= 0 and L(s, χ) 6= 0.

The case of Re(s) > 1 is a simple consequence of the Euler product formula for ζ(s) and
L(s, χ) (cf. Theorem 24); the difficult part is the case Re(s) = 1. For this, I formalised the
very simple proof presented by Newman [25], whose key ingredient is the aforementioned
Pringsheim–Landau theorem (see Theorem 11). This proof is stunningly short and its
high-level reasoning translates well to Isabelle/HOL now that a library of Dirichlet series is
available. The gain is most striking for the Dirichlet L function, where Apostol’s proof only
treats the case of s = 1, and even that proof is still more complicated than Newman’s and

M. Eberl 16:9

involves lengthy complicated “Big-O” reasoning. Indeed, in a first version of the formalisation,
I formalised Apostol’s proof, but it was considerably longer and messier than the new version
– with the added bonus that the new one is also more general.

Harrison also only proves L(1, χ) 6= 0 – indeed, he does not define L(s, χ) at all; he
defines only L(1, χ) since that is all that is required for Dirichlet’s theorem. Despite this and
the much higher verbosity of structured Isabelle proofs compared to HOL Light,his proof is
longer than mine. The reason for this is that his proof is very elementary and uses very little
library material while mine builds on a large library of Dirichlet series. However, I think
that the comparison is still not entirely unjustified since all of this material is sufficiently
general to be called “library material” (as opposed to technical lemmas specifically designed
for this one proof), and building sufficiently large and general libraries to make proofs like
this cleaner and easier is, after all, one of our goals in formalisation.

5.3 Hurwitz’s Formula
More as a challenge to myself and the Isabelle libraries, I chose to formalise another non-trivial
property of the ζ functions:

I Theorem 31 (Reflection formula for ζ(s)). For s /∈ {0, 1}, we have:

1
Γ(s) · ζ(1− s) = 2(2π)−s cos(πs/2)ζ(s)

Note that while Γ(s) has poles at s ∈ Z≤0, its reciprocal 1/Γ(s) is entire, so the formula holds
even for s ∈ Z<0.

This formula is a corollary of a more general one for ζ(s, a) known as Hurwitz’s formula:

I Theorem 32 (Hurwitz’s formula). Let a ∈ (0, 1) and s ∈ C \ {0} with a 6= 1 ∨ s 6= 1. Then:

1
Γ(s) · ζ(1− s, a) = (2π)−s

(
i−sF (s, a) + isF (s,−a)

)

Here, F (s, a) is the periodic ζ function, which we still have to define:

I Definition 33 (Periodic ζ function). For Re(s) > 1, the periodic ζ function F (s, a) is given
by the Dirichlet series F (s, a) =

∑∞
n=1 e

2iπnan−s .

B Claim 34. F (s, a) is called periodic because F (s, a+ n) = F (s, a) for any integer n. For
non-integer a, the above series converges for Re(s) > 0 and can be continued to an entire
function. For integer a, it is simply the Riemann ζ function.

Apostol does not discuss the analytic continuation of F (s, a) at all, but it seemed useful
to me to do this nonetheless. The strategy I used to construct the continuation of F (s, a) for
non-integer a is somewhat interesting: Theorem 32 can be rearranged to give a formula that
expresses F (s, a) in terms of ζ(1− s, a) and ζ(1− s, 1− a):

I Theorem 35. Let a ∈ (0, 1) and s ∈ C \ N. Then:

F (s, a) = i(2π)s−1Γ(1− s)
(
i−sζ(1− s, a)− isζ(1− s, 1− a)

)

We therefore proceed like this (assuming w. l. o. g. a ∈ (0, 1)):
1. Show Theorem 32 for Re(s) > 1 (where F is simply given by its Dirichlet series).
2. Use this to show Theorem 35 for Re(s) > 1.

ITP 2019

16:10 Nine Chapters of Analytic Number Theory in Isabelle/HOL

Re = 0

Im = 0

(2N+1)π
ε

2iπ

4iπ

2Niπ

2(N+1)iπ

−2iπ

−4iπ

−2Niπ

−2(N+1)iπ

Re = 0

Im = 0

(2N+1)π
ε

2iπ

4iπ

2Niπ

2(N+1)iπ

Figure 1 Apostol’s integration contour and my modified version for proving Hurwitz’s formula
(ε < 2π). The black dots are the poles of the integrand; the thick black line is its branch cut. Note
that in both cases, the line segments of the contour lie on the real axis despite the small gap in the
illustration.

3. Use the right-hand side of Theorem 35 as the definition of F (s, a) for s /∈ N. Compatibility
with the Dirichlet series definition follows by analytic continuation.

4. Since the Dirichlet series definition covers Re(s) > 0 and the new definition covers C \ N,
the only point left is s = 0, which is a removable singularity that can be eliminated via

F (0, a) := lim
s→0

F (s, a) = i

2π
(
prezeta(1, a)− prezeta(1, 1− a) + ln(1− q)− ln q

)
− 1

2 .

5. Extend the validity of Theorems 32 and 35 to their full domains by analytic continuation.

The only difficult part here is the first step, which we shall look at now. First of all, we
require the contour integral representation for ζ(s, a) mentioned in Section 5.1:

I Theorem 36. For any s ∈ C \ {1}, we have

ζ(s, a) = Γ(1− s)
2iπ

∫
zs−1eaz

1− ez dz where =
Re = 0

Im = 0
2iπ

−2iπ

if the inner circle has radius ε < 2π. This continues ζ(s, a) analytically to C \ {1}.

Proof. Due to analytic continuation, we can assume Re(s) > 1 w. l. o. g. By homotopy, all
contours with a radius ε < 2π yield the same result. Letting ε→ 0, the contribution of the
circle vanishes and the

∫
becomes the

∫∞
0 from Theorem 29. J

I Remark 37. Note that in order to even state this theorem formally, one needs to make the
limit inherent in this “improper contour integral” explicit. I chose to decompose the integral
as
∫

=
∫

−
∫

. The two line segments can then be written as Lebesgue integrals∫ −∞
0 , leaving only two finite circular arcs as the remainder. There is yet another subtlety
hidden in this integral that will be discussed in Section 5.3.1.

M. Eberl 16:11

The proof of Hurwitz’s formula for Re(s) > 1 then proceeds by computing this contour
integral in a different way using the Residue Theorem. To do this, we first need to approximate
it by an integral over a finite contour CN,ε such that

∫
CN,ε
−→

∫
as N → ∞. Figure 1

shows Apostol’s choice for CN,ε. Applying the Residue Theorem to this, we get

1
2iπ

∫

CN,ε

z−seaz

1− ez dz =
∑

z0

indCN,ε
(z0) Res

z=z0

z−seaz

1− ez (4)

where the sum on the right-hand side extends over all the singularities of the integrand
(represented by black dots in Figure 1). We can now let N →∞ so that the contribution of the
outer circle vanishes. The integral on the left-hand side is then simply a

∫
, which is equal

to ζ(s, a)/Γ(s) by Theorem 36, and winding number on the right-hand side −1 for every non-
zero pole z0. Evaluating this sum, we find that it indeed equals i−s

(2π)sF (s, a) + is

(2π)sF (s,−a),
which concludes the proof of Hurwitz’s formula for Re(s) > 1. y

The formalisation of the proof was fairly routine. It is, however, quite large and tedious,
containing almost 1,000 lines of proof code compared to 6.5 pages in Newman’s book (both
including the proof of Theorem 36). This seems to be a common pattern in Isabelle proofs
using the Residue Theorem and it is likely due to the many side conditions that need to
be shown, many of which are of geometric nature and thus much easier to explain to a
human than to a theorem prover. Side conditions like the analyticity of the integrand, on the
other hand, can be solved mostly automatically using Isabelle’s general-purpose automation
together with specialised theorem collections like analytic_intros.

Some aspects of the formal proofs of these statements deserve more attention, and we
will discuss them now.

5.3.1 Branch Cuts
In both theorems, the term z−s is a multi-valued function. It is defined in Isabelle as e−s ln z

where ln is the standard branch of the logarithm, which has a branch cut on the negative
real axis. The two lines of Apostol’s contour lie directly on this cut, taking different branches
of the logarithm (indeed, if they did not, they would simply cancel each other). This makes
sense formally when considering the integrand as a multi-valued function in the sense of a
Riemann surface, but we do not have any of this analytic machinery in Isabelle.

My first idea to circumvent this problem was to resort to some kind of limiting argument
by placing the two horizontal lines not directly on the real axis, but some ε above (resp.
below) it. However, this would likely have been a very tedious argument to do in Isabelle. I
therefore decided to again cut the contour into two halves, similarly to Remark 37. When
their integrals are added together, we recover Apostol’s contour integral. Due to symmetry,
it is actually again enough to look at the upper half (cf. the right part of Figure 1), as the
lower one follows by conjugation.

For this upper contour , we can now integrate over the same branch of the logarithm
everywhere. In order to avoid the branch cut of the standard logarithm, I use a different
branch l̃n z := ln(−iz) + 1

2 iπ , whose branch cut lies on the negative imaginary axis, safely
away from our contour. I also reversed the contour so that the winding numbers are all 1.

5.3.2 Homotopy
The proof of Theorem 36 uses the fact that the integral along is invariant for all radii
ε < π. This is because all of these contours are homotopic, i. e. they can be continuously
deformed into one another without crossing any of the singularities of the integrand. However,
proving that this is the case turned out to be very tedious in Isabelle because there are
almost no library theorems that help showing that two composite paths are homotopic.

ITP 2019

16:12 Nine Chapters of Analytic Number Theory in Isabelle/HOL

I circumvented this problem in the following way: First of all, I restricted myself to
ε < π.3 Next, since the line segments extending from −π to −∞ are the same for all ε, we
can ignore them and focus on the finite subcontour . It can be seen that

∫
=
∫
−
∫

.
By symmetry, it is enough to show that

∫
is invariant under changes of ε. This, on the

other hand, is actually a corollary of (4): If we let N := 0, the sum on the right-hand side
vanishes so that we get

∫
C0,ε

=
∫

= 0 for all ε. Since
∫

=
∫
−
∫

= −
∫

and
(a half circle of radius π) is independent of ε, it follows that

∫
is indeed the same for all ε.

Effectively, this replaces the homotopy argument (which is intuitively obvious for humans
and not mentioned at all by Apostol) with a much “heavier” invocation of the Residue
Theorem – but since we already applied the Residue Theorem anyway, all that work is
already done.

5.3.3 Winding Numbers

The evaluation of the winding numbers indCN,ε
(z0) is also easy for a human: the contour

CN,ε = clearly winds counter-clockwise once around each pole 2niπ with 0 < n ≤ N ,
and all the other poles are clearly completely outside the contour. Proving these things
in a theorem prover, on the other hand, is notoriously difficult [20], especially for a more
complicated contour like this.

To show that the poles outside the contour really do lie outside (i. e. have winding number
0), I use simple geometric arguments: for the branch cut on the negative imaginary axis,
one can draw a vertical line from each point to −i∞ without crossing CN,ε, so the winding
number for these points must be 0. Moreover, CN,ε is contained in a ball of radius (2N + 1)π,
which is a convex set that does not contain any of the poles with n > N . Thus, these poles
must also have winding number 0.

The more difficult part is to show that the winding number for the points inside the
contour is 1. Geometric arguments for this are difficult. One approach would be to show
that the contour is a closed simple curve (which implies that the winding number must be
either -1, 0, or 1) and then weigh the contributions of the four different parts of the curve to
show that the overall value must be positive, thus 1. However, to avoid having to do this
work, I instead use Li’s framework for computing winding numbers in Isabelle [23]. It is
based on computing Cauchy indices and comes with some setup to handle combinations of
line segments and circular arcs almost automatically, allowing me to prove that the winding
numbers are 1 with a mere 18 lines of proof code.

6 The Prime Number Theorem

The formal statement of the PNT is simply the asymptotic estimate π(x) ∼ x ln x, where
π(x) is the number of prime numbers ≤x. I will now explain, in a high-level way, how the
formalised proof works. First of all, let us define the following functions related to primes:

3 This restriction could easily be lifted by allowing arbitrary radii in (4) instead of just (2N + 1)π.

M. Eberl 16:13

Re = 0

Im = 0

R

ε

Re = 0

Im = 0

R

ε

Figure 2 Newman’s integration contour in his proof of Ingham’s Tauberian theorem and Harrison’s
modified version. The dot in the middle is the pole of the integrand at the origin.

I Definition 38.

π(x) =
∑

p≤x
1 = |{p | p prime ∧ p ≤ x}| pn = the n-th prime number (p0 = 2)

ϑ(x) =
∑

p≤x
ln p M(x) =

∑
p≤x

ln p/p

ψ(x) =
∑

n≤x
Λ(n) =

∑
pk≤x

ln p M(x) =
∑

n≤x
µ(n)

π(x) is usually called the “prime-counting function”. ϑ(x) and ψ(x) are the first and the
second Chebyshev function. µ(n) is the Möbius µ function. M(x) is a non-standard notation
I adopted; the function that it denotes is related to Mertens’ first theorem and a key part in
Newman’s proof of the PNT.

I Theorem 39. The following are all equivalent formulations of the PNT, i. e. given one of
them, it is fairly easy to show the other ones by elementary means:

π(x) ∼ x/ ln x π(x) ln π(x) ∼ x pn ∼ n lnn ϑ(x) ∼ x ψ(x) ∼ x M(x) ∈ o(x)

Most of these equivalence proofs are quite short, both on paper and in Isabelle.
Newman’s approach to prove the PNT is then to prove M(x) = ln x+ c+ o(1) , which

implies ϑ(x) ∼ x fairly directly as we shall see. The key ingredient is a Tauberian theorem
first proven by Ingham, which we will discuss now.

6.1 Ingham’s Tauberian Theorem
A Tauberian theorem is a theorem that allows one to show – under certain conditions – that
a series converges in some region if the function that it defines exists there. In our case,
Ingham’s theorem allows us to show that certain Dirichlet series converge not just to the
right of the abscissa of convergence, but on it as well. The precise statement is as follows:

I Theorem 40 (Ingham’s Tauberian theorem). Let F (s) =
∑
ann

−s be a Dirichlet series
with an ∈ O(nσ−1) for some σ ∈ R. Then F converges to an analytic function f(s) for
Re(s) > σ. If f(s) is analytic on the larger set Re(s) ≥ σ, then F also converges to f(s) for
all Re(s) ≥ σ.

One can w. l. o. g. assume σ = 1. Newman then proves the theorem by applying the Residue
Theorem twice, once to a circle around 0 with a vertical cut-off line to the left of the origin,
close to the abscissa of convergence (see Figure 2) and once to a full circle around the origin.

ITP 2019

16:14 Nine Chapters of Analytic Number Theory in Isabelle/HOL

My formal proof follows Newman’s argument very closely, but like Harrison, I use a
modified version of Newman’s contour: a semicircle plus a rectangle (see Figure 2). The
value of the integral is the same in both cases since the two contours are homotopic, but the
bounding of the contributions of the various parts of the contour is different.

The reason why I picked Harrison’s contour over Newman’s is that I could not understand
how Newman’s bounding of the different contributions fits to his contour, and it seems likely
that this is also the reason why Harrison altered the contour in the first place. Additionally,
the shape of the inside of Harrison’s contour is somewhat easier to describe.

The formal proof is quite short (roughly 500 lines) and was – apart from the issue I just
mentioned – very straightforward to write. However, it again suffers from the aforementioned
typical problems of complex analysis in Isabelle, namely having to prove many side conditions
such as the geometry of the integration contours. The winding numbers, on the other hand,
are unproblematic this time since the contours are very simple.

6.2 An Overview of the Remainder of Newman’s Proof
Recall that our main objective was to prove

M(x) ∼ ln x+ c+ o(1) . (5)

The starting point is Mertens’ First Theorem, which I prove following e. g. Hildebrand [21]:

I Theorem 41 (Mertens’ First Theorem). M(x) = ln x+O(1)

To then show (5) from this, Newman defines the Dirichlet series f(s) :=
∑∞
n=1 M(n)n−s .

Since M(n)− lnn is bounded, f(s) converges absolutely for Re(s) > 1. Rearrangement yields

f(s) =
∑

p

ln p
p
ζ(s, p) for Re(s) > 1

and further rearrangements show

f(s) = A(s)− ζ ′(s)/ζ(s)
s− 1 for Re(s) > 1

for some function A(s) that is analytic for Re(s) > 1
2 . Moreover, ζ ′(s)/ζ(s) is analytic for

Re(s) ≥ 1, s 6= 1 due to the non-vanishing of ζ(s) in that domain (cf. Theorem 30).
Putting everything together, we obtain that f(s) can be continued analytically to Re(s) ≥ 1

except for a double pole at s = 1. As Newman states, this double pole can be turned into a
simple pole by adding ζ ′(s), and that simple pole can then be eliminated by subtracting a
suitable multiple of ζ(s), yielding a function g(s) := f(s) + ζ ′(s)− c ζ(s) that is analytic for
Re(s) ≥ 1 and has the Dirichlet series

g(s) =
∞∑

n=1
(M(n)− lnn− c)︸ ︷︷ ︸

=: an

n−s .

Applying Theorem 40, we deduce that this series converges for Re(s) ≥ 1. For s = 1, this
means that

∑∞
n=1

an

n is summable. Next, Newman proves the following lemma:

I Lemma 42. Let an : N→ R be non-decreasing and
∑∞
n=0

an

n be summable. Then an −→ 0.

M. Eberl 16:15

Applied to our an from before, we get M(n)− lnn −→ c. From this, the slightly stronger
version on real numbers (5) follows easily by noting that ln x− lnbxc −→ 0.

There were no major difficulties in formalising any of this. However, some parts deserve
a few comments:

The rearrangements leading to the analytic continuation of f(s) involve changing the
order of summation in nested infinite sums. To do this, I used Isabelle’s library for
absolutely summable families. This makes the arguments nice to formalise, but the library
has the problem of having a function for the value of an infinite sum and for its existence.
Any rearrangement of sums therefore has to be done twice, once for the value of the sum
and once for its summability. Similar problems occur in Isabelle with nested integrals
and it is not clear if and how this can be avoided in a HOL-based theorem prover.
Showing that A(s) is indeed analytic for Re(s) > 1

2 was a surprisingly easy application of
the Weierstraß M test with the bounding series Mn := lnn(Cn−x−1 + n−x(nx − 1)−1) .
The proof obligation that Mn be summable can be solved by showing Mn ∈ O(n−1−ε)
with a suitable ε > 0, and this can be shown by Isabelle’s automation for real limits [17].
The pole cancellation argument showing that g(s) is analytic is about 86 lines long,
which is not too long, but still longer than one might expect given that it is obvious
considering the Laurent series expansions of the functions involved. This is due to the
fact that there is currently no theory of Laurent series expansions in Isabelle yet. In the
future, this entire argument could potentially be automated by computing Laurent series
expansions for meromorphic functions similarly to how Isabelle’s automation already
computes Multiseries expansions [17] for real-valued functions.
The proof of Lemma 42 is very technical and tedious, but it seems to me that this is the
case in Newman’s paper presentation as well.

The last remaining step, showing that M(x)− ln x −→ c implies ϑ(x) ∼ x, is left as an
exercise to the reader by Newman. Harrison was not quite sure what Newman meant [20] and
proceeded to prove a number of very technical and ad-hoc lemmas that I find very difficult
to follow. Therefore, instead of attempting to port Harrison’s proof, I followed Newman’s
hint in the book and used Abel’s summation formula to write ϑ(x) in terms of M(x):

ϑ(x) = xM(x)−
∫ x

2 M(t) dt (6)

Substituting (5) into (6) yields, in a straightforward way,

ϑ(x) = x ln x+ cx+ o(x)−
∫ x

2 ln t+ c+ o(1) dt
= x ln x+ cx+ o(x)− (x ln x− x+ cx+ o(x)) = x+ o(x)

and thus the desired ϑ(x) ∼ x. I find it likely that this is what Newman had in mind. J

7 Various Other Interesting Results

In this last section, I will give a few examples of other interesting number-theoretic results
that I have formalised. The proofs were all fairly straightforward and there is not much to
be said about them, but they are worth mentioning nonetheless.

I Theorem 43 (Dirichlet’s Theorem). Let m > 0 and gcd(k,m) = 1. Then there are infinitely
many primes congruent k modulo m.

ITP 2019

16:16 Nine Chapters of Analytic Number Theory in Isabelle/HOL

I Theorem 44 (Elementary bounds for π(x) and pn). For any x ≥ 2 and n > 0, we have:

1
6
x

ln x < π(x) < 3(e−1 + ln 2) x

ln x and 139
443n lnn ≤ pn−1 < 12(n lnn+ n ln(12/e))

In particular, this implies π(x) ∈ Θ(x/ ln x) and pn ∈ Θ(n lnn). All of this can be derived
without the PNT (hence “elementary” results).

I Theorem 45 (Mertens’ three theorems).
−1− 9π−2 <M(n)− lnn ≤ ln 4 for all n > 0 and thus |M(n)− lnn| < 2.
|(∑p≤x 1/p)− ln ln x−M | ≤ 4/ ln x for all x ≥ 2 and thus∑
p≤x 1/p = ln ln x+M +O(1/ ln x) where M is the Meissel–Mertens constant.∏
p≤x(1− 1/p) = C/ ln x+O(ln−2 x) for some constant C > 0.

Typically, number-theoretic functions that talk about a single integer such as ϕ(n) and
σ0(n) oscillate heavily and therefore have no nice asymptotics like π(x) ∼ x ln x. However,
their averages (i. e.

∑
n≤x ϕ(n)) are often more well-behaved:

I Theorem 46 (Averages of arithmetical functions).
Let S(x) denote the number of square-free integers ≤x. Then S(x) = 6

π2x+O(
√
x) , i. e.

6/π2 ≈ 60.8 % of integers are square-free.
Euler’s totient function ϕ fulfils

∑
n≤x ϕ(n) = 3

π2x
2 + O(x ln x) , i. e. on average, an

integer n has 3
π2n numbers ≤ n that are coprime to it (≈ 30.4 %).

The divisor function σ0 fulfils
∑
n≤x σ0(n) = x ln x+(2γ−1)x+O(

√
x) where γ ≈ 0.5772

is the Euler–Mascheroni constant, i. e. on average, an integer n has lnn+ 2γ− 1 divisors.∑
n≤x σα(n) = ζ(α+1)

α+1 xα+1 +O(R(x)) for α > 0
where R(x) = x ln x if α = 1 and R(x) = xmax(1,α) otherwise.∑

n≤x σ−α(n) = ζ(α+ 1)x+O(R(x)) for α > 0
where R(x) = ln x if α = 1 and R(x) = xmax(0,1−α) otherwise.

Lastly, the following are interesting consequences that follow relatively easily from the PNT:

I Corollary 47.
For each c > 1, there exists an x0 s. t. all intervals (x, cx] with x ≥ x0 contain a prime.
The fractions of the form p/q for prime p, q are dense in R>0.
lcm(1, . . . , n) = exp(x+ o(x))
lim supn→∞ ω(n) ln lnn/ lnn = 1
lim supn→∞ ln σ0(n) ln lnn/ lnn = ln 2
lim infn→∞ ϕ(n) ln lnn/n = C for some C ∈ R>0

The last three statements perhaps deserve some more explanation: They give asymptotic
bounds for ω(n), σ0(n), and ϕ(n). For instance, ω(n) < c lnn/ ln lnn for all sufficiently large
n if c > 1, but ω(n) > c lnn/ ln lnn for infinitely many n if c < 1. Thus, lnn/ ln lnn is the
best possible upper bound of that shape for ω(n) (and analogously for the other two).

As for the other direction, recall that ω(p) = 1, σ0(p) = 2, and ϕ(p) = p−1. Therefore, the
above results show that ω(n) oscillates between 1 and lnn/ ln lnn, σ0(n) oscillates between
2 and 2lnn/ ln lnn, and ϕ(n) oscillates between Cn/ ln lnn and n− 1.

8 Size of the Formalisation

The formalised material is spread over five AFP entries [13, 12, 15, 18, 16]. They have a
combined size of roughly 25,000 lines of Isabelle code, with the two largest single files by far
being those on the analytic properties of Dirichlet series and the properties of the ζ functions.

M. Eberl 16:17

With the exception of a few minor results, the work presented here was done in 1.5 years
by one person – however, the work was not done continuously, but sporadically whenever I
found time for it. The total amount of time that went into it is therefore difficult to measure.
As a point of reference, the formalisation of Newman’s proof of the Prime Number Theorem
(with all the components such as Dirichlet series and the ζ function already in place) comprises
3300 lines and took 6 days of full-time work. However, I used two small lemmas that had
previously been ported from Harrison’s HOL Light formalisation by Paulson. Considering
this, a time frame of 7 days for proving the Prime Number Theorem seems reasonable. Based
on this, a total effort of 4–6 person-months for the entire work seems realistic.

The formalisation proceeded smoothly and without major difficulties, although some
aspects of it stand out as considerably more painful than one might hope:
1. applying the Residue Theorem
2. geometric properties of integration contours
3. manipulating nested infinite sums
4. establishing homotopy of concrete composite paths
5. reasoning about cancellation of poles
For the first three items, it is not clear to me if and how this can be improved – or if, perhaps,
there is simply an inherent difficulty in doing such things formally.

Item 4 could probably be addressed by providing more library results about homotopy.
Item 5 could be easily managed by building a tactic to automatically compute Laurent

series expansions for meromorphic functions, similar to the existing one for Multiseries
expansions of real functions [17]. This would be an interesting project for the future.
Extending the limit automation to use not just full asympotic expansions but also partial
asymptotic information (such as ϑ(x) ∼ x) would also occasionally eliminate some tedious
manual work.

A related issue is that reasoning with asymptotic expansions like f(x) = x2 +ln x+O(1/x)
can be tedious in Isabelle/HOL. They can be written as f =o (λx. xˆ2+ln x) +o O(λx. 1/x) ,
but there is currently little support for working with them. Affeldt et al. [1] demonstrated
an approach for this in Coq that could possibly be adapted to Isabelle/HOL.

9 Conclusion

I formalised a large portion of a mathematical textbook on an advanced topic, namely
Analytic Number Theory. While some results from this field have been formalised before
(such as Dirichlet’s Theorem and the Prime Number Theorem), they typically tried to obtain
a short route to the result without building an actual library of Analytic Number Theory.

In my opinion, this work demonstrates the following:
Formalising an entire mathematical textbook in a modern theorem prover can be feasible
with a moderate amount of effort.
Good and extensive libraries (e. g. on complex analysis and Dirichlet series) can yield short,
clear, and high-level proofs of “high-profile” results like the Prime Number Theorem.
Specialised tools (e. g. for proving limits or computing winding numbers) are invaluable,
as they can take care of tedious and uninteresting parts of the proofs and “close the gap”
between what is obvious to a human mathematician and what is easy to do in the system.

There is already work in progress on formalising the remaining parts of Apostol’s book.
After that, a natural continuation would be to focus on the second volume of Apostol’s
book, which is called Modular Functions and Dirichlet Series in Number Theory [3]. This
would be another big step in formalising the essential tools of modern number theory in a
theorem prover.

ITP 2019

16:18 Nine Chapters of Analytic Number Theory in Isabelle/HOL

References
1 Reynald Affeldt, Cyril Cohen, and Damien Rouhling. Formalization Techniques for Asymptotic

Reasoning in Classical Analysis. J. Formalized Reasoning, 11(1):43–76, 2018. doi:10.6092/
issn.1972-5787/8124.

2 Tom M. Apostol. Introduction to analytic number theory. Undergraduate Texts in Mathematics.
Springer-Verlag, 1976. doi:10.1007/978-1-4757-5579-4.

3 Tom M. Apostol. Modular Functions and Dirichlet Series in Number Theory, volume 41
of Graduate Texts in Mathematics. Springer-Verlag, New York, 1990. doi:10.1007/
978-1-4612-0999-7.

4 Andrea Asperti and Wilmer Ricciotti. A proof of Bertrand’s postulate. Journal of Formalized
Reasoning, 5(1):37–57, 2012. doi:10.6092/issn.1972-5787/3406.

5 Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. A Formally Verified Proof
of the Prime Number Theorem. ACM Trans. Comput. Logic, 9(1), December 2007. doi:
10.1145/1297658.1297660.

6 Raymond Ayoub. Euler and the zeta function. The American Mathematical Monthly,
81(10):1067–1086, 1974. doi:10.2307/2319041.

7 Joseph Bak and Donald J. Newman. Complex Analysis. Undergraduate Texts in Mathematics.
Springer New York, 1999.

8 Clemens Ballarin. Locales: A Module System for Mathematical Theories. Journal of Automated
Reasoning, 52(2):123–153, 2014. doi:10.1007/s10817-013-9284-7.

9 Julian Biendarra and Manuel Eberl. Bertrand’s postulate. Archive of Formal Proofs, Janu-
ary 2017. , Formal proof development. URL: http://isa-afp.org/entries/Bertrands_
Postulate.html.

10 Mario Carneiro. Arithmetic in Metamath, Case Study: Bertrand’s Postulate. CoRR,
abs/1503.02349, 2015. arXiv:1503.02349.

11 Mario Carneiro. Formalization of the prime number theorem and Dirichlet’s theorem. In
Proceedings of the 9th Conference on Intelligent Computer Mathematics (CICM 2016), pages
10–13, 2016. URL: http://ceur-ws.org/Vol-1785/F3.pdf.

12 Manuel Eberl. Dirichlet L-functions and Dirichlet’s theorem. Archive of Formal Proofs, Decem-
ber 2017. , Formal proof development. URL: http://isa-afp.org/entries/Dirichlet_L.
html.

13 Manuel Eberl. Dirichlet series. Archive of Formal Proofs, October 2017. , Formal proof
development. URL: http://isa-afp.org/entries/Dirichlet_Series.html.

14 Manuel Eberl. The Euler–MacLaurin Formula. Archive of Formal Proofs, March 2017. ,
Formal proof development. URL: http://isa-afp.org/entries/Euler_MacLaurin.html.

15 Manuel Eberl. The Hurwitz and Riemann ζ Functions. Archive of Formal Proofs, October 2017.
, Formal proof development. URL: http://isa-afp.org/entries/Zeta_Function.html.

16 Manuel Eberl. Elementary Facts About the Distribution of Primes. Archive of Formal Proofs,
February 2019. , Formal proof development. URL: http://isa-afp.org/entries/Prime_
Distribution_Elementary.html.

17 Manuel Eberl. Verified Real Asymptotics in Isabelle/HOL. Draft available at https://www21.
in.tum.de/~eberlm/real_asymp.pdf, 2019.

18 Manuel Eberl and Lawrence C. Paulson. The Prime Number Theorem. Archive of Formal
Proofs, September 2018. , Formal proof development. URL: http://isa-afp.org/entries/
Prime_Number_Theorem.html.

19 John Harrison. A formalized proof of Dirichlet’s theorem on primes in arithmetic progression.
Journal of Formalized Reasoning, 2(1):63–83, 2009. doi:10.6092/issn.1972-5787/1558.

20 John Harrison. Formalizing an analytic proof of the Prime Number Theorem (Dedicated
to Mike Gordon on the occasion of his 60th birthday). Journal of Automated Reasoning,
43(3):243–261, October 2009. doi:10.1007/s10817-009-9145-6.

21 A. J. Hildebrand. Introduction to analytic number theory (lecture notes). https://faculty.
math.illinois.edu/~hildebr/ant/.

https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.1007/978-1-4757-5579-4
https://doi.org/10.1007/978-1-4612-0999-7
https://doi.org/10.1007/978-1-4612-0999-7
https://doi.org/10.6092/issn.1972-5787/3406
https://doi.org/10.1145/1297658.1297660
https://doi.org/10.1145/1297658.1297660
https://doi.org/10.2307/2319041
https://doi.org/10.1007/s10817-013-9284-7
http://isa-afp.org/entries/Bertrands_Postulate.html
http://isa-afp.org/entries/Bertrands_Postulate.html
http://arxiv.org/abs/1503.02349
http://ceur-ws.org/Vol-1785/F3.pdf
http://isa-afp.org/entries/Dirichlet_L.html
http://isa-afp.org/entries/Dirichlet_L.html
http://isa-afp.org/entries/Dirichlet_Series.html
http://isa-afp.org/entries/Euler_MacLaurin.html
http://isa-afp.org/entries/Zeta_Function.html
http://isa-afp.org/entries/Prime_Distribution_Elementary.html
http://isa-afp.org/entries/Prime_Distribution_Elementary.html
https://www21.in.tum.de/~eberlm/real_asymp.pdf
https://www21.in.tum.de/~eberlm/real_asymp.pdf
http://isa-afp.org/entries/Prime_Number_Theorem.html
http://isa-afp.org/entries/Prime_Number_Theorem.html
https://doi.org/10.6092/issn.1972-5787/1558
https://doi.org/10.1007/s10817-009-9145-6
https://faculty.math.illinois.edu/~hildebr/ant/
https://faculty.math.illinois.edu/~hildebr/ant/

M. Eberl 16:19

22 Johannes Hölzl, Fabian Immler, and Brian Huffman. Type Classes and Filters for Mathematical
Analysis in Isabelle/HOL. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie,
editors, Interactive Theorem Proving, volume 7998 of Lecture Notes in Computer Science,
pages 279–294. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-39634-2_21.

23 Wenda Li and Lawrence C. Paulson. Evaluating Winding Numbers and Counting Complex
Roots through Cauchy Indices in Isabelle/HOL. CoRR, abs/1804.03922, 2018. arXiv:1804.
03922.

24 M. Ram Murty and Marilyn Reece. A simple derivation of ζ(1 − K) = −BK/K. Funct.
Approx. Comment. Math., 28:141–154, 2000. doi:10.7169/facm/1538186691.

25 Donald J. Newman. Analytic number theory. Number 177 in Graduate Texts in Mathematics.
Springer, 1998. doi:10.1007/b98872.

26 Marco Riccardi. Pocklington’s theorem and Bertrand’s postulate. Formalized Mathematics,
14:47–52, January 2006. doi:10.2478/v10037-006-0007-y.

27 Laurent Théry. Proving Pearl: Knuth’s Algorithm for Prime Numbers. In David Basin and
Burkhart Wolff, editors, Theorem Proving in Higher Order Logics, pages 304–318, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. doi:10.1007/10930755_20.

ITP 2019

https://doi.org/10.1007/978-3-642-39634-2_21
http://arxiv.org/abs/1804.03922
http://arxiv.org/abs/1804.03922
https://doi.org/10.7169/facm/1538186691
https://doi.org/10.1007/b98872
https://doi.org/10.2478/v10037-006-0007-y
https://doi.org/10.1007/10930755_20

D Linear Recurrences

This chapter was originally published as an article in the proceedings of a peer-reviewed
conference:

M. Eberl.
Veried Solving and Asymptotics of Linear Recurrences.
In Proceedings of the 8th ACM SIGPLAN International Conference on Certied Programs
and Proofs.
CPP 2019, pages 27–37, New York, NY, USA, 2019. ACM.
DOI: 10.1145/3293880.3294090.

I am the sole author of this article, thus all contributions are mine.

Synopsis: This work provides a formalisation in Isabelle/HOL of the theory of linear re-
currences with constant coecients and rational generating functions, and the connection
between these two. It also provides a fully executable solver to determine the closed-form
solution of a recurrence and a fast checker to certify ‘Big-O’ bounds for a solution without
computing it.

On the following pages, the full article is reproduced in its published form in accordance to
the ACM author rights for reproduction in a dissertation. The ocial version in the ACM
Digital Library can be found under the DOI cited above.

119

http://dx.doi.org/10.1145/3293880.3294090

Verified Solving and Asymptotics of
Linear Recurrences

Manuel Eberl
Institut für Informatik

Technische Universität München
Garching bei München, Germany

eberlm@in.tum.de

Abstract
Linear recurrences with constant coefficients are an interest-
ing class of recurrence equations that can be solved explicitly.
The most famous example are certainly the Fibonacci num-
bers with the equation f (n) = f (n − 1) + f (n − 2) and the
quite non-obvious closed form

1√
5
(φn − (−φ)−n)

where φ is the golden ratio.
This work builds on existing tools in Isabelle – such as

formal power series and polynomial factorisation algorithms
– to develop a theory of these recurrences and derive a fully
executable solver for them that can be exported to program-
ming languages like Haskell.
Based on this development, I also provide an efficient

method to prove ‘Big-O’ asymptotics of a solution automat-
ically without explicitly finding the closed-form solution
first.

CCS Concepts •Mathematics of computing→ Gener-
ating functions; Solvers;

Keywords linear recurrences, generating functions, asymp-
totics, formal power series, Fibonacci, Isabelle, theorem prov-
ing

ACM Reference Format:
Manuel Eberl. 2019. Verified Solving and Asymptotics of Linear
Recurrences. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’19), January 14–
15, 2019, Cascais, Portugal. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3293880.3294090

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6222-1/19/01. . . $15.00
https://doi.org/10.1145/3293880.3294090

1 Introduction
This paper is about verifying the theory, the asymptotics,
and an executable solver for linear recurrences with constant
coefficients. It supports both homogeneous recurrences and
inhomogeneous recurrences where the inhomogeneous part
is from a certain class. From this point onward, I will use the
term ‘linear recurrence’ and implicitly mean ‘linear recur-
rence in one variable with constant coefficients’.
The most famous such recurrence is certainly the one

defining the Fibonacci numbers:

F0 = 0 F1 = 1 Fn = Fn−1 + Fn−2

They are named after the 12th-century Italian mathematician
Leonardo of Pisa – who is nowadays known better by the
name Fibonacci – although it was studied by Indian math-
ematicians much earlier in connection with the possible
patterns in the metre of Sanskrit prosody. Fibonacci, on the
other hand, presented them in the context of a puzzle about
the population growth of rabbits: assuming a pair of adult
rabbits produces a new pair of baby rabbits every month, rab-
bits take one month to mature, and rabbits never die, what
is the number of adult rabbit pairs after n months, starting
with a single pair of baby rabbits?

The Fibonacci numbers have a number of very interesting
properties and occur in many places in mathematics. They
can be written as the closed-form expression

Fn =
φn −ψn

√
5

where φ = 1
2 (1 +

√
5) is the golden ratio and ψ = 1 − φ =

1
2 (1 −

√
5).

This may seem surprising since the closed form contains
irrational constants that do not cancel in an obvious way
even though the Fibonacci numbers are all natural numbers.
This closed form directly implies the asymptotic estim-

ate f (n) ∼ φn/√5, which is very accurate – it turns out, in
fact, that f (n) = [φn/√5] for all positive n, where [·] is the
‘nearest integer’ function.

More generally, such recurrences arise in certain enumer-
ation problems: the number of steps required to solve the
‘Tower of Hanoi’, the number of ordered partitions of in-
tegers, or enumerating all lists of a given length with some

27

https://doi.org/10.1145/3293880.3294090
https://doi.org/10.1145/3293880.3294090

CPP ’19, January 14–15, 2019, Cascais, Portugal Manuel Eberl

additional restrictions (e. g. forbidden patterns). They also
arise in the average-time analysis of recursive algorithms [6],
in the analysis of imperative programs with loops [12, 17],
and in the analysis of probabilistic algorithms like random
walks[11].

It is therefore of great interest that these recurrences can
be solved automatically. The key is the so-called characteristic
polynomial, which can be read off directly from the recur-
rence equation. The roots of this polynomial determine the
general shape of the solution, whereas the precise coefficients
depend on the initial values. For example, the characteristic
polynomial of the Fibonacci recurrence Fn = Fn−1 + Fn−2
is x2 − x − 1, whose roots are φ andψ , so that the solution
must have the general form c1φ

n + c2ψ
n independently of

the initial values. The initial values do, however, determine
the values of c1 and c2.

Developing the theory behind this in Isabelle/HOL can be
done in the most nice and abstract way using formal power
series (FPSs); in particular, using the well-known correspond-
ence between linear recurrences with constant coefficients
and rational FPSs, i. e. power series that are of the form p/q
for complex polynomials p,q with q , 0.

In the end, I will use some existing Isabelle tools to derive
a fully automatic solver for linear recurrences with con-
stant coefficients. Furthermore, I provide a more efficient
tool to certify ‘Big-O’ asymptotic bounds for the solution
of such a recurrence. To my knowledge, this is the first
general treatment of linear recurrences in a proof assist-
ant. The development is available as an entry in the Archive
of Formal Proofs [4]. At the time of writing, a part of it is
only available in the development version of the Archive
(https://devel.isa-afp.org).

2 Mathematical Basics
2.1 Formal Power Series
A key ingredient in the textbook approach to solving linear
recurrences are formal power series (FPSs) in the form of or-
dinary generating functions. These are purely formal objects;
their purpose is nothing but to have a nice algebraic object
that represents a sequence.

Formally, the commutative (semi-)ring of FPSs over a com-
mutative (semi-)ring R with formal parameter X is written
as R[[X]], and its elements are written e. g. as

A(X) =
∞∑
n=0

anX
n ,

where an is the sequence of coefficients. Let us denote an
– the n-th coefficient of the power series A – with [XN]A,
and call a0 = [X 0]A the constant coefficient. In analogy to

polynomials, the basic operations are defined as:

0 =
∞∑
n=0

0 · Xn

1 =
∞∑
n=0
(if n = 0 then 1 else 0)Xn

A(z) + B(z) =
∞∑
n=0
(an + bn)Xn

A(z) · B(z) =
∞∑
n=0

(
n∑
i=0

aibn−i

)
Xn

From now one, we shall always restrict ourselves to the
case where the underlying ring is a field K , and at some
point, we will also introduce the additional assumption that
K is algebraically closed. In practice, this field will therefore
be the complex numbers, but the theory is developed as
generally as possible.

In the polynomial ring K[X], the only units (i. e. elements
with a multiplicative inverse) are then the constant non-zero
polynomials. In K[[X]], on the other hand, all FPSs with
non-zero constant coefficient are invertible with

A(z)−1 =
∞∑
n=0

bnX
n for bn =

{
1
a0

for n = 0
− 1
a0

∑n
i=1 aibn−i otherwise

It is clear that there exists an injective canonical homomorph-
ismK[X] → K[[X]]. One therefore implicitly identifies poly-
nomials in K[X] with the corresponding FPS in K[[X]]. Fur-
thermore, if p,q ∈ K[X] and q(0) , 0 (i. e. the constant
coefficient of q is non-zero), then q is a unit in K[[X]] and
the quotient p(x)/q(x) ∈ K[[X]] is well-defined. Let us call
FPSs of this form rational, and they form a sub-ring ofK[[X]].
Algebraically speaking, this ring of rational FPSs is the local-
isation of K[X] w. r. t. {p | p(0) , 0}.
Note that this ring of rational FPSs is smaller than the

ring of rational functions K(X): The latter contains e. g. 1/X ,
whereas the former does not. The rational FPSs are essen-
tially those elements of K(X) that do not have a pole at the
origin.
This sub-ring is what we are interested in, since rational

FPSs are precisely those whose coefficients satisfy linear re-
currences. I therefore defined the Isabelle type ratfps that
corresponds to this sub-ring and connected it to the FPS type
with the injective canonical homomorphism α ratfps →
α fps (where α is the type of the coefficients) on one side
and to the fraction field of polynomials with an injective
homomorphism α ratfps → α poly fract on the other side.
Isabelle’s Code Generator was set up to perform computa-
tions on rational FPSs by representing the quotient as a pair
of coprime polynomials where the second one (the denom-
inator) must be monic and non-zero (which is a convenient
unique representation). This makes it possible to write the
solving algorithms in a very abstract way, operating directly

28

https://devel.isa-afp.org

Verified Solving and Asymptotics of Linear Recurrences CPP ’19, January 14–15, 2019, Cascais, Portugal

on FPSs, and still directly generate executable code from
these definitions.

A standard approach to solve recurrences is the following:
1. Use the recurrence to find a simple equation that char-

acterises the FPS of the sequence.
2. Solve that equation to find a closed-form expression

for the FPS.
3. Use algebraic transformations to break down the FPS

into simpler parts.
4. Read off the solution as the coefficients of these simple

parts.
In our case, more concretely, the steps are the following:

1. Write the inhomogeneous part as an FPS (in our case:
as a rational FPS).

2. Use this to write the entire recurrence as a (rational)
FPS.

3. Factor the denominator of the FPS into linear polyno-
mials of the form 1 − ciX .

4. Perform Partial Fraction Decomposition to bring this
rational FPS into the form.

p(X) +
k∑
i=1

bi

(1 − ciX)ki
for a polynomial p ∈ K[X] and numbers bi , ci ∈ K .

5. Read off the coefficients from this sum.

2.2 The Homogeneous Part
Let us first consider a homogeneous recurrence. To obtain a
more uniform presentation, let us assume that it is given in
the form
∀n ≥ l . c0 f (n) + c1 f (n + 1) + . . . + cm f (n +m) = 0 (1)

withm + l base cases (otherwise, the sequence would not be
uniquely defined). The number l is the number of ‘excess’
base cases and will usually be 0.
Let F (X) be the generating function of f and define the

polynomial q as
q(X) = c0Xm + c1X

m−1 + . . . + cm .

Then, for any n ≥ m + l , we have:
[Xn] (q(X)F (X))
= [Xn] (c0XmF (X) + c1Xm−1F (X) + . . . + cmF (X)

)
= c0 f (n −m) + c1 f (n −m + 1) + . . . + cm f (n) (1)= 0

Therefore, p(X) := q(X)F (X) is a polynomial of degree at
mostm + l . Its coefficients can easily be calculated as

[Xn]p(X) =
min(m,n)∑

i=0
cm−i f (n − i) .

In other words, we now have F (X) = p(X)/q(X). Note that
if cm , 0, which is a reasonable demand to make from a
well-formed recurrence equation, the constant coefficient of
the denominator q(X) is also non-zero.

2.3 The Inhomogeneous Part
Treating inhomogeneous recurrences can be done in a very
similar way as homogeneous ones. In analogy to (1), we now
consider recurrences of the form

∀n ≥ l . c0 f (n)+c1 f (n+1)+ . . .+cm f (n+m) = д(n+m) (2)
We again let q(X) be as before and obtain:

[Xn] (q(X)F (X))
= [Xn] (c0XmF (X) + c1Xm−1F (X) + . . . + cmF (X)

)
= c0 f (n −m) + c1 f (n −m + 1) + . . . + cm f (n) (2)= д(n)

If we let G(X) be the generating function of the inhomogen-
eous partд, we therefore know thatp(X) := q(X)F (X)−G(X)
is a polynomial of degree at mostm + l − 1, and, analogously
to before, its coefficients can be calculated as

[Xn]p(X) =
(min(m,n)∑

i=0
cm−i f (n − i)

)
− д(n)

and we have F (X) = (p(X) +G(X))/q(X). In particular, this
means that if G(X) is rational, F (X) is as well.

The remaining question is how to go from the closed form
of the sequence д(n) to a rational generating function G(X).
However, sinceG(X) is rational iff д(n) can be written as a
sum of terms of the form cnkan for c,a ∈ C and k ∈ N, it
suffices to determine what the generating function of nkan
is. For this purpose, let Bk (X) :=

∑∞
n=0 n

kXn . We obviously
have:

∞∑
n=0

nkanXn = Bk (aX)

We therefore only have to determine Bk (X). As it turns out,

Bk (X) =
{
1/(1 − X) for k = 0
XEk (X)/(1 − X)k+1 otherwise

where Ek (X) is the k-th Eulerian polynomial, defined as:

Ek (X) =

1 for k = 0
(nX −X + 1)Ek−1(X)
+ (X −X 2)E ′k−1(X)

otherwise

This is easily verified by induction over k . In conclusion, we
have

∞∑
n=0

nkanXn =

{
1/(1 − aX) for k = 0
aXEk (aX)/(1 − aX)k+1 otherwise

and can therefore write the inhomogeneous part as a rational
FPS as long as it is given in polynomial-exponential form.

From now on, we will consider the following recurrence
as a running example:

f (n) − f (n − 1) − 2f (n − 2) = n 2n f (0) = f (1) = 0

29

CPP ’19, January 14–15, 2019, Cascais, Portugal Manuel Eberl

By the above result, the generating function of the inhomo-
genous part n 2n is G(X) = 2X/(1 − 2X)2 (since E1 = 1).
According to the above definitions, we compute p(X) = −2X
and q(X) = −2X 2 −X + 1, leading to the generating function∑

f (n)Xn =
p(X) +G(X)

q(X) =
8X 3 − 8X 2

8X 4 − 4X 3 − 6X 2 + 5X − 1 .

2.4 Factoring the Denominator
We now have the generating function for the recurrence
in the form p(X)/q(X) with q(0) , 0, and w. l. o. g. we can
assume q(X) to be monic. The next step is to factor q(X)
in order to break down the generating function into easier
terms.
If the field K is algebraically closed, the q(X) can always

be factored into the form

d (1 − c1X)n1 . . . (1 − ckX)nk (for d, ci ∈ K)
Thiemann et al. [13, 14] have implemented several methods
of factoring real and complex polynomials in Isabelle/HOL,
using an implementation of algebraic real numbers based on
Sturm sequences. Their algorithm produces a factorisation in
terms of linear factors of the form X − c; applying it to qR
(the reflected polynomial) yields a factorisation in terms of
linear factors 1 − cX , as desired.

For our running example, factoring the denominator into
such linear factors yields

8X 4 − 4X 3 − 6X 2 + 5X − 1 = −(1 + X)(1 − 2X)3 .

2.5 Partial Fraction Decomposition
We now have our FPS in the form

p

(1 − c1X)n1 . . . (1 − ckX)nk
and we want to break this up into simpler summands. This
can be done with Partial Fraction Decomposition, which op-
erates, more generally, on a quotient of the form

p

qn1
1 . . .q

nk
k

where all the qk are pairwise coprime. Partial Fraction De-
composition then brings this quotient into the form

r +
k∑
i=1

ni∑
j=1

si j

q ji

where r , si j ∈ K[X] and each si j has a degree less than that
of qi . In particular, if the qi have degree 1 (which is the case
here), the si j must all be constants.
To do this, consider the fraction p/(qr) for gcd(q, r) = 1.

Then the extended Euclidean algorithm gives us s, t ∈ K[X]
with sq + tr = 1 and therefore

p

qr
=
pt

q
+
ps

r

Iterating this process on our original quotient gives us the
following decomposition:

p

qn1
1 . . .q

nk
k

=

k∑
i=1

ri
qnii

(3)

Iterated polynomial division by qi on each summand yields

ri
qnii
=
si ,ni + qisi ,ni−1 + . . . + q

ni−1
i si ,1 + q

ni
i si ,0

qnii

=
si ,ni
qnii
+
si ,ni−1
qni−1i

+ . . . +
si ,1
qi
+ si ,0

Collecting the si ,0 into a single polynomial r then gives us
the desired form.
Alternatively, one can avoid the polynomial division in

the last step: Since the polynomials qi have the form 1 − cX
in our case, the summands in (3) have the form

rn−1Xn−1 + . . . + r0
(1 − cX)n

and we can apply a Binomial transform to the ri to express
the numerator as a polynomial in 1 − cX . This may yield
slightly better performance and could be implemented as
future work, but the ni are typically relatively low anyway.

Applied to our running example, the decomposition is:

− 8X 3 − 8X 2

(1 + X)(1 − 2X)3 =
16
27

1 + X +
2
3

(1 − 2X)3 −
4
9

(1 − 2X)2 −
22
27

1 − 2X

2.6 Constructing the Solution
We now have the FPS in the form

r (X) +
k∑
i=1

n0∑
j=1

ai j

(1 − ciX)j .

To find the closed-form solution of the original recurrence,
we must now extract the coefficients from this FPS. We can
again do this for every summand individually.
For the polynomial summand r , the solution is obvious:

The n-th coefficient of r as an FPS is simply the n-th coef-
ficient of the polynomial r . If n is larger than the degree
of r , we have [Xn] r = 0. The polynomial summand r can
therefore be seen as an adjustment term that influences only
the first few elements of the sequence. This is necessary
when the recurrence is ‘overspecified’, i. e. there are more
initial conditions given than necessary to define the sequence
uniquely.
For the other summands, it suffices to consider the FPS
(1 − cX)−j for j > 0. Using the FPS form of the generalised

30

Verified Solving and Asymptotics of Linear Recurrences CPP ’19, January 14–15, 2019, Cascais, Portugal

Binomial Theorem, we find that

(1 − cX)−j =
∞∑
n=0

(−j
n

)
(−cX)n

=

∞∑
n=0

cn
(
j + n − 1

n

)
Xn

=

∞∑
n=0

cn

(j − 1)! ((n + 1) · . . . · (n + j − 1))X
n

Obviously, pj (n) := (n + 1) · . . . · (n + j − 1) is a polynomial
in n. In fact, it turns out that

pj (n) =
j−1∑
i=0

sj ,i+1n
i

where si ,n are the Stirling numbers of the first kind, which
gives a more efficient formula to compute the pj . We can
conclude:

[Xn] ai j

(1 − ciX)j =
ai j

(j − 1)!pj (n)c
n
i

With this, we now have a complete procedure starting
from a homogeneous or inhomogeneous recurrence and end-
ing with a concrete and computable representation of the
closed-form solution of the recurrence.

Applying this to our running example, whose generating
function we decomposed into

16
27

1 + X +
2
3

(1 − 2X)3 −
4
9

(1 − 2X)2 −
22
27

1 − 2X ,

we obviously obtain the contribution 16
27 · (−1)n for the first

summand and −2227 · 2n for the last one. For the other two
summands, we compute

p2(n) = n + 1 p3(n) = n2 + 3n + 2
and thereby:

[Xn]
2
3

(1 − 2X)3 =
2
3
2! (n

2 + 3n + 2)2n =
(
1
3n

2 + n +
2
3

)
2n

[Xn] − 4
9

(1 − 2X)2 =
− 4

9
1! (n + 1)2

n =

(
−49n −

4
9

)
2n

Adding all the contributions together, we obtain the closed-
form solution:

f (n) =
(
1
3n

2 +
5
9n −

16
27

)
2n + 16

27 · (−1)
n

2.7 Asymptotics
Since the closed form of the coefficients of a rational FPS
p(X)/q(X) involves the complex roots of q, it can be some-
what unwieldy to work with: We have to fully factor the
polynomial and do computations with (potentially complic-
ated) algebraic numbers, which can lead to some problems, as

we will see later. Fortunately, if we do not care about the pre-
cise closed form but only the asymptotics of the coefficients,
there is an easier way.
Since any k-th order complex root z of the denominator

q(X) contributes a summand r (n)z−n with deg(r) ≤ k − 1
to the solution, it is clear that the asymptotically dominant
summands are those where |z | is minimal. In fact, it is easy
to see that whenever we can find a radius R > 0 such that
there are no roots z with |z | < R and all roots with |z | = R
have order ≤ k + 1, the solution is O(nkR−n). This fact has
been proven in Isabelle.
Note that the numerator polynomial p(X) does not ap-

pear in the asymptotics at all. In particular, this implies that
the ‘Big-O’ bound for the solution of a linear recurrence
holds irrespective of the precise initial values. However, the
numerator polynomials (and thereby the initial values of a
recurrence) can influence the asymptotics: If p(X) and q(X)
have a non-trivial common divisor (i. e. they share at least
one root), we can cancel that divisor from the fraction, which
also reduces the number of roots in the denominator and
may thereby lead to a smaller asymptotic upper bound.
When this is not possible – i. e. when the numerator and

denominator are coprime, which can always be ensured for
concrete polynomials in the numerator and denominator –
then we have not only deg(r) ≤ k , but deg(r) = k (see e. g.
Theorem IV.9 by Flajolet and Sedgewick [5]), which means
that the above ‘Big-O’ estimate is tight. If there is a single
dominant root, one therefore even gets a ‘Big-Θ’ bound. One
could show this in Isabelle, but this was not done yet, since I
considered the ‘Big-O’ bounds to be the most relevant ones
for applications, e. g. in the analysis of algorithms.

For our running example, we can automatically prove that
the solution is O(n22n): The square-free factorisation of the
denominator 8X 4−4X 3−6X 2+5X −1 already yields the full
factorisation (1 + X)(2X − 1)3. We then consider the circle
|X | = 1

2 and note that none of the factors have a root inside
that circle and no factor with exponent > 2 + 1 has a root
on the circle (since no such factor exists). This certifies the
upper bound O(n22n).

3 Formalisation in Isabelle
3.1 Formal Power Series
I build on the existing formalisation of FPSs by Chaieb [3],
which I extended, among other things, with a more gen-
eral notion of division: Chaieb only defined division in the
case where the divisor is a unit, i. e. has a non-zero constant
coefficient. This is problematic because division can also
be well-defined when the divisor is not a unit, e. g. X/X or
(X 3+X)/(X 2+X). I therefore defined the concept of a subde-
gree in Isabelle, i. e. the index of the first non-zero coefficient.
The division of two FPSs is well-defined iff the subdegree
of the divisor does not exceed that of the dividend, and the
new division operator I defined works in all of these cases.

31

CPP ’19, January 14–15, 2019, Cascais, Portugal Manuel Eberl

Before we proceed, the concept of normalisation in a ring
in Isabelle must be explained. In mathematics, one usually
defines the greatest common divisor of the integers 4 and 6
to be 2, even though −2 would also be a perfectly adequate
choice. Similarly, for the polynomials 2X and 3X in the ring
R[X], it makes sense to define the GCD to be just X , even
though any cX for c ∈ R \ {0} would also be possible. The
underlying problem is that concepts like GCD and LCM do
not really operate on elements of a ring, but on association
classes. However, it is, of course, usually more convenient
to work with ring elements, which is why one designates
a single element of an association class to be the canonical
representative of that class.

In Isabelle, we capture this in the class normalization_semi-
dom, which assumes the existence of a normalize operation
that, given some element x ∈ R, returns the canonical rep-
resentative of the association class of x . We call an element
normalized if it is the representative of its association class.
For us, this is useful in handling fractions: I extended

Chaieb’s fract type, which implements the fraction field of a
given integral domain R, by adding the concept of a normal-
ised fraction. Rational numbers, for instance, can be brought
into a unique normal form by requiring the numerator and
denominator to be coprime and the denominator to be posit-
ive. The same thing can be done for any integral domain R
with a GCD and a concept of normalisation: One can bring
any fractiona/b into normal form by dividinga andb by their
GCD and then normalising the resulting denominator and
adjusting the numerator accordingly. This yields a fraction
a′/b ′ such that a′ and b ′ are coprime and b ′ is normalised,
and this representation can easily be shown to be unique.
I then used this to define the type α ratfps as the subset

of α poly fract on which the denominator of the normalised
fraction has a non-zero constant coefficient. Using Isabelle’s
code_abstype feature and the transfer [8] package, oper-
ations on ratfps can be implemented in terms of pairs of
polynomials with the above-mentioned invariant and thus
make the ratfps type fully executable. This allows us to auto-
matically translate our abstract algorithms on FPSs directly
to executable code. As a bonus, it also makes the ratfps and
fps types available to Isabelle’s counterexample generator
QuickCheck [2], which aids us by automatically providing
counterexamples when we write down an incorrect theorem
statement.

3.2 Partial Fraction Decomposition
I used the following very general view of Partial Fraction De-
composition: Let R be a Euclidean domain and S an arbitrary
ring with a homomorphism φ : R → S . Let n1, . . . ,nk ∈ N>0
and p,q1, . . . ,qk ∈ R such that the qi are pairwise coprime
and all theφ(qi) are units in S . Then, by following the process

outlined in Section 2.5, we obtain r , si j ∈ R such that

φ(p)
φ(q1)n1 . . .φ(qk)nk

= φ(r) +
k∑
i=1

ni∑
j=1

φ(si j)
φ(qi)j

and all the si j have a Euclidean norm less than the Euclidean
norm of qi .

In our case, the Euclidean domain R is the ring of polyno-
mials K[X], the ring S is the ring of rational FPSs, and φ is
the canonical homomorphism ratfps_of_poly. Also, each of
the qi is of the form 1 − cX , such that φ(1 − cX) is always a
unit in S .

However, thanks to this very general derivation, one could
also use it for R = Z and S = R to bring 1

90 =
1

2·32 ·5 into the
form −1 + 1

2 +
1
32 +

2
5 .

3.3 Complex Root Counting
One step that was still left open in the discussion of coef-
ficient asymptotics before was how to actually check the
conditions that the polynomial has no roots inside a given
circle around the origin, and all the roots on the circle itself
have at most order k . To do this, we need two components:
• Wenda Li’s executable root counting algorithm[9, 10]
that can count the number of complex roots within
certain subsets of the complex plane, e. g. circles, rect-
angles, and half-planes. Many variants are offered, but
I use only root counting inside an open disc (|z | < R)
and on a circle (|z | = R) without taking multiplicities
into account.
• Square-free factorisation as formalised by Thiemann
et al. [15, 16]. This is much less involved than a full
factorisation and allows us to break up a polynomial
into factors of the form pi (X)ki such that the pi are
square-free and pair-wise coprime. This means that
each root of the original polynomial is present in ex-
actly one of the pi , and the corresponding ki is the
order of the root.

We therefore only have to run the square-free factorisation
algorithm and then check that no pi has a root with |z | < R,
and that additionally no pi with ki > k has any roots with
|z | = R. None of this involves factoring the entire polynomial,
and all computations can be done in the relatively pleasant
field Q[i] – unless, of course, the coefficients or the radius R
itself are already irrational themselves.

3.4 Code generation
The steps given above can be broken down into a number of
Isabelle/HOL functions, which provides some modularity:

3.4.1 lhr_fps
This function takes a list of coefficients c0, . . . , cm and initial
values f0, . . . , fm+l−1 and returns the rational FPS of the cor-
responding recurrence as described in Section 2.2. Note that
this implicitly uses the convention of Section 2.2 where the

32

Verified Solving and Asymptotics of Linear Recurrences CPP ’19, January 14–15, 2019, Cascais, Portugal

recurrence is only required to hold for n ≥ l ; i. e. extra initial
values can be used to encode exceptions to the recurrence.

3.4.2 lir_fps
This is analogous to lhr_fps, but additionally takes a repres-
entation of the inhomogeneous part. This representation has
the form of a list of tuples (a,b,k), encoding a sum over the
terms ankbn . This is done according to the process outlined
in Section 2.3.

3.4.3 solve_factored_ratfps
This function takes a rational FPS F (X) = p(X)/q(X) where
q , 0 and q(X) has already been factored into terms of the
form 1 − cX with c , 0 and returns a representation of a
closed-form expression for its coefficients. This representa-
tion consists of a complex polynomial al−1X l−1+ . . .+a0 and
a list of pairs (pi (X),bi)wherepi (X) is a complex polynomial
and bi is a complex number with the property that

[Xn]F (X) = an +
∑

pi (n)bni
where an = 0 for all n ≥ l . This is done by following the
process described in Section 2.5 and immediately applying
the process from Section 2.6 to the results.

3.4.4 solve_ratfps
The only missing link is now to factor the denominator poly-
nomial of the rational FPS obtained from lhr_fps or lir_fps
into terms of the form 1 − cX . This is done by simply re-
flecting the polynomial and calling an arbitrary factoring
algorithm.

I use the formalised algorithm by Thiemann et al. [13, 14],
which takes a complex polynomial p(X) and returns some
complex number d and a list of pairs (ei ,ki) such that p(X) =
d ·∏(X −ei)ki+1 and the ei are distinct. Because we reflected
the polynomial, we therefore get p(X) = d ·∏(1 − eiX)ki+1,
which is exactly what we need.

Through the use of the Algebraic Number library by Thie-
mann et al., this method works out-of-the-box for any ra-
tional FPS whose numerator and denominator have rational
coefficients, and therefore the overall method works for any
linear recurrence with rational coefficients.

3.5 Isabelle Theorems
For the purpose of illustration, I shall print some of the main
theorems from the Isabelle formalisation. Some of the nota-
tion was adjusted very slightly to make the statements more
readable without knowledge of Isabelle, but the statements
as printed are still very close to the original ones in Isabelle.
In particular, the explicit homomorphisms between N and Z

or between K[X] and K[[X]] that have to be made explicit
in Isabelle are still present.
The following is the statement of the Isabelle theorem

about converting a linear homogeneous recurrence to a ra-
tional FPS:

lemma
fixes f :: nat⇒ (α :: field) and cs :: α list
defines N := length cs − 1
assumes cs , []
assumes ∀n ≥ m. (∑

k≤N csk · f (n + k)
)
= 0

assumes last cs , 0
shows Abs_fps f = fps_of_poly (lhr_fps_numeratorm cs f) /

fps_of_poly (lr_fps_denominator cs)

Here, the α :: field stands for an arbitrary type of the type
class field, which is a field in the algebraic sense. This type
class has concrete instances like rat, real, or complex.

The functionAbs_fps converts between a sequence (a func-
tion N→ α) and an FPS (α fps). The function fps_of_poly is
the canonical homomorphism mapping a polynomial to an
FPS. Note that all the functions on the right-hand side of the
equation in the theorem statement have code equations in
Isabelle and are therefore executable.

Furthermore, the theorem on the closed form of a rational
FPS is:

lemma
assumes is_alt_factorization_of fctrs q and q , 0
shows Abs_fps (interp_ratfps_solution

(solve_factored_ratfps’ p fctrs)) =
fps_of_poly p / fps_of_poly q

with

definition interpret_ratfps_solution (p, cs) n =
coeff p n + (∑(q,c)←cs poly q (of_nat n) · c ˆn)

Here, poly evaluates a polynomial and of_nat is the canonical
homomorphism from N into any other semiring. Moreover,
is_alt_factorization_of states that fctrs is a factorization of q
into the form d

∏(1 − eiX)ni as we have seen before, with
fctrs being a pair consisting of the d and a list of pairs of
the ei and ni . The solution that is being computed is a pair
of a polynomial p, whose coefficients form the ‘correction
terms’ for recurrences with additional initial values, and a
list consisting of pairs of a polynomial ri (X) and a number ci
such that ri (n) cni is a summand in the solution. The function
interpret_ratfps_solution ‘evaluates’ such a solution for a
given n.

Since these theorems are somewhat notationally technical,
I will not print any more of them here; the correctness the-
orems for converting inhomogeneous recurrences to FPSs
and solving recurrences look very similar to the ones printed
here.

33

CPP ’19, January 14–15, 2019, Cascais, Portugal Manuel Eberl

However, the following more abstract theorem about the
shape of solutions of rational FPSs (and thereby linear recur-
rences) is probably reasonably readable:
theorem
fixes p q :: complex poly
assumes coeff q 0 , 0
defines q′ := reflect_poly q
obtains r rs
where ∀n. fps_nth (fps_of_poly p / fps_of_poly q) n =

coeff r n + (∑c | poly q′ c = 0 poly (rs c) (of_nat n) · c ˆn)
and ∀z. poly q′ z = 0 =⇒ degree (rs z) ≤ order z q′ − 1

It states that the solution of a rational FPS is a sum where
each root c of the denominator contributes a summand of the
form p(n)cn , plus a correction term that vanishes for almost
all n. Moreover, the degree of each polynomial is at most the
order of the corresponding root minus 1. The variable rs in
the above Isabelle theorem is the function that associates the
polynomial to each root, and the r is a polynomial whose
coefficients constitute the ‘correction term’.
This also directly implies the key theorem on coefficient
asymptotics:
theorem
fixes p q :: complex poly
assumes square_free_factorization q (b, cs)
assumes q , 0 and R > 0
assumes ∀(c, l)∈cs. ∀x . norm x < 1/R −→ poly c x , 0
assumes ∀(c, l)∈cs. ∀x . l > k ∧ norm x = 1/R −→ poly c x , 0
shows fps_nth (fps_of_poly p / fps_of_poly q) ∈

O(λn. of_nat n ˆk · of_real R ˆn)
The square_free_factorization predicate asserts that the given
polynomial q(X) has a square-free factorization into some
constant b and some list of factors ci (X)li pairs, represented
as a list of pairs of the form (c, l).

The Landau symbol O(. . .) is defined in the usual fashion
where f ∈ O(д) iff there exists some C ∈ R such that, for all
sufficiently large x , | f (x)| ≤ C |д(x)|.

3.6 Pretty Printing
One disadvantage of using the Algebraic Number library is
that printing irrational algebraic numbers is not straightfor-
ward. Without additional setup, evaluating e. g. sqrt 2 leads
to a few lines of fairly illegible output which corresponds to
the internal representation of irrational algebraic numbers
in the Isabelle library as an integer polynomial with an addi-
tional upper and lower bound that uniquely identifies one
root of the polynomial, which is the number that is being
described.
Thankfully, Thiemann et al. also provide some pretty-

printing functionality which converts a real-algebraic num-
ber into a human-readable string. For algebraic numbers of
degree at most 2, this is exactly what one would expect: a
combination of rational numbers and square roots. However,
for numbers of higher degree, the output is unfortunately still

of the form ‘k-th root of polynomial p’; e. g. 3√2 is rendered
as root #1 of -2 + x^3, in (1,2).
I add to this some more pretty-printing code in order to

display rational FPSs and the solutions computed for linear
recurrences in a natural, human-readable form.

It should be noted that all of the pretty-printing that Thie-
mann et al. and I do is unverified; however, in both cases,
the step from the representation in Isabelle to the human-
readable string is very small.

4 Evaluation
We can now evaluate the solver on some examples using
Isabelle’s value and export_code commands.

4.1 Fibonacci Numbers
For the Fibonacci case, we invoke solve_lhr [-1,-1,1]
[0,1], which – after pretty-printing the complex numbers –
returns:

Some (0, [(sqrt(1/5), (1/2+sqrt(5/4))),
(-sqrt(1/5), (1/2-sqrt(5/4)))])

Alternatively, when using the pretty-printer for solutions of
recurrences, we get:

(sqrt(1/5)) * (1/2+sqrt(5/4)) ^ x +
(-sqrt(1/5)) * (1/2-sqrt(5/4)) ^ x

We can also compute the rational FPS of the recurrence using
lhr_fps directly:

-1x / (-1 + x + x^2)

4.2 A Higher-Degree Recurrence
Another simple example of higher degree is the sequence
0, 1, 2, 3, 0, 1, 2, 3, . . . with the recurrence f (n + 4) − f (n) = 0
and the initial values 0, 1, 2, 3. The output is

(-1/2) * (-1) ^ x + (-1/2+1/2i) * (1i) ^ x +
(-1/2+-1/2i) * (-1i) ^ x + (3/2)

or, in a more readable form:

f (n) = −(−1)
n

2 +
i − 1
2 in − i + 1

2 (−i)
n +

3
2

4.3 Running Example
Next, let us again consider our running example as an ex-
ample of an inhomogenous recurrence. This can be solved
by evaluating

solve_lir [-2, -1, 1] [0, 0] [(1, 1, 2)]

which returns
(-16/27 + 5/9x + 1/3x^2) * 2 ^ x +

(16/27) * (-1) ^ x

4.4 A pathological Example
Lastly, we look the seemingly innocuous example 5f (n+4)+
4f (n + 3) + 3f (n + 2) + 2f (n + 1) + f (n) = 0 with arbitrary
initial values. The recurrence solver does not terminate for
this example and eventually runs out of memory. Factoring

34

Verified Solving and Asymptotics of Linear Recurrences CPP ’19, January 14–15, 2019, Cascais, Portugal

the characteristic polynomial itself is no problem, but due
to the way algebraic complex numbers are implemented
by Thiemann et al., the computations with the roots of this
polynomial lead to a significant blow-up in the degrees of the
integer polynomials used to represent the real and imaginary
parts of complex algebraic numbers, which then need to be
factored again.

However, if we only want to know the asymptotics of the
solution, things are much more pleasant: The dominant roots
of the characteristic polynomial have an absolute value of
1.445046..., whose reciprocal is ≈ 0.6920196, so we can easily
show e. g. f (n) ∈ O(0.69202n) automatically.

4.5 Performance Comparison
Evaluating any of these examples directly in Isabelle with
the value command takes about 1 minute. However, almost
all of this is taken up by code generation and compilation.
I therefore exported the code for the functions solve_lhr,
solve_lir, and the pretty printing to Haskell using Isabelle’s
code_export command, wrote a minimal wrapper for in-
put/output and to convert Haskell numbers into the expor-
ted datatype for complex numbers, and compiled everything
with the Glasgow Haskell Compiler.

Comparing the performance of the Isabelle solver to that
of systems like Mathematica and Maple does not make much
sense because the computation time is completely dominated
by the polynomial factorisation, so any attempt to compare
the efficiency of the linear recurrence solvers essentially
boils down to a mere comparison of the efficiency of the
polynomial factorisation algorithms. Nevertheless, Table 1
gives a quick impression of how the verified solver and Math-
ematica’s solver perform on the above examples and some
more randomly-generated examples. The performance for
certifying a reasonably tight ‘Big-O’ bound in Isabelle is also
given.
The measurements are to be taken with a grain of salt

as they were conducted on a shared machine in the com-
puter pool at the Technical University of Munich since this
was the only machine on which a Mathematica licence was
available. However, repeating the measurements at different
times showed that they were fairly stable; they should be
good enough to at least give a qualitative comparison of the
performance behaviour of the different approaches.

The table shows that Mathematica performs considerably
better than the Isabelle solver on the pathological example
of degree 5 mentioned before. However, for similarly patho-
logical polynomials of even a slightly higher degree (e. g.
9), Mathematica also fails to terminate within a reasonable
amount of time (around 5 minutes). The verified asymptotics
certification method works much better than either solver,
but its performance also degenerates very quickly as the
degrees grow, and its performance also depends on how
‘complicated’ the fraction b in the O(nkbn) is. The reason
for this is that the current implementation of Wenda Li’s

root-counting method uses rational arithmetic and the nu-
merators and denominators can grow very large, depending
on the numbers in the input and the degree of the polyno-
mial. This is a known problem with remainder-series-based
approaches like Li’s.

The performance comparison suggests that solving recur-
rences externally and somehow certifying results in Isabelle
is perhaps not very useful, since the verified solver copes
very well with ‘simple’ recurrences and when one moves to
complicated recurrences, the performance of the Mathemat-
ica solver also degrades very quickly. Furthermore, since the
performance degradation seems to comemainly from polyno-
mials with ‘complicated’ roots and the irrational arithmetic
involved in the resulting computations, it seems likely that
any kind of certification in a case like this would also have to
involve the same irrational arithmetic since these roots are
part of the closed-form solution. It therefore seems doubtful
if certification of a closed-form solution makes sense.

However, both the polynomial factorisation by Thiemann
et al. and the root-counting procedure by Li are under active
development and the code developed here will directly profit
from any improvements that they make.

There is no analogue to the verified asymptotics certifier
in Mathematica or Maple, although it would be fairly easy to
write one and it should be very efficient, seeing as systems
like Mathematica tend to have very sophisticated algorithms
for root isolation. In fact, it may be useful to employ a system
like Mathematica to determine the approximate or exact
asymptotics of an equation using its root isolation algorithms
and then certify it in Isabelle using the verified certifier.
However, this has not been implemented yet.

5 Related Work
To my knowledge, this is the first work on the theory and a
solver for linear recurrences in a proof assistant. The theory
of these recurrences has been known for a long time and is
usually taught in undergraduate courses of mathematics. The
classic method of applying partial fraction decomposition
to the rational FPS that was used in this work can be found
in many textbooks [7]. An alternative route is to use results
from Analytic Combinatorics [5] for meromorphic functions
(of which rational functions are a special case) to obtain the
coefficients of the FPS in terms of the complex residues at
its poles.
Many different executable solvers for linear recurrences

are available, e. g. PURRS [1] or those that come with com-
puter algebra systems like Mathematica and Maple. For the
homogeneous part, they also use the approach of factor-
ing the characteristic polynomial (possibly with some pre-
processing to decrease the degree of the recurrence). Unlike
the Isabelle formalisation, these systems typically support

35

CPP ’19, January 14–15, 2019, Cascais, Portugal Manuel Eberl

Table 1. Benchmark results of the solver (the verified one and Mathematica’s) and the verified certifier. The first 4 examples are
the ones from above; the remaining ones have randomly-generated coefficients ranging from −10 to 10. A time of 0 indicates
that the time was below 1 ms; a time of ∞ indicates a timeout after more than 5 minutes. The given asymptotics show an
approximation of the actual (irrational) basis.

Example Degree Asymptotics Time (ms)
Solver (ver.) Solver (Math.) Certifier (ver.)

Fibonacci 2 O(1.619n) 12 20 0
0, 1, 2, 3... 4 O(1) 0 12 0
f (n) + 2f (n − 1) = n · 2n 3 O(n · 2n) 0 12 0
Running example 5 O(n2 · 2n) 7 368 0
Pathological 5 O(0.69202n) ∞ 4600 0
Random 3 O(2.331n) 1200 970 0
Random 9 O(1.1552n) ∞ ∞ 260
Random 11 O(8.876n) ∞ ∞ 5100
Random 14 O(1.1985n) ∞ ∞ 238000

more complicated inhomogeneous parts. This typically re-
quires finding a closed form for some symbolic sum or ‘guess-
ing’ a solution. Furthermore, they also allow solving systems
of recurrences. Both of this is beyond the scope of this work.

6 Conclusion
I formalised the basic theory of and an executable solver for
linear recurrences with constant coefficients, both homogen-
eous ones and inhomogeneous ones where the inhomogen-
eous term is of polynomial-exponential form. An executable
solver for these recurrences and a more efficient certifier for
the ‘Big-O’ asymptotics of their solutions is also provided.
This development makes use of many different components:
• Executable polynomial factorisation and algebraic
numbers (Thiemann et al. [13, 14])
• Square-free polynomial factorisation
(Thiemann et al. [15, 16])
• Formal power series (Chaieb [3])
• Stirling Numbers (Isabelle library)
• Counting complex roots (Li [9, 10])
• Eulerian polynomials (Eberl)
• Partial Fraction Decomposition (Eberl)
• Executable rational FPSs (Eberl)

The last three of these were motivated by this very applica-
tion of solving linear recurrences and the modularity allows
us to e. g. easily improve the Partial Fraction Decomposition
algorithm in the future, or to directly benefit from any per-
formance improvements made by Thiemann et al. without
any changes to the recurrence solver.

Acknowledgments
Thisworkwas supported byDeutsche Forschungsgemeinsch-
aft under Grants DFG RTG 1480 (PUMA) and DFG Koselleck
NI 491/16-1.

Lastly, I would like to thank René Thiemann and Akihisa
Yamada for their help with their Algebraic Numbers library
and Wenda Li for implementing the circular case in his root-
counting algorithm upon my suggestion. I also thank the
anonymous reviewers for their advice.

References
[1] R. Bagnara, A. Zaccagnini, and T. Zolo. 2003. The Automatic Solution of

Recurrence Relations. I. Linear Recurrences of Finite Order with Constant
Coefficients. Quaderno 334. Dipartimento di Matematica, Università di
Parma, Italy. Available at http://www.cs.unipr.it/Publications/.

[2] Lukas Bulwahn. 2012. The New Quickcheck for Isabelle. Springer
Berlin Heidelberg, Berlin, Heidelberg, 92–108. https://doi.org/10.1007/
978-3-642-35308-6_10

[3] Amine Chaieb. 2011. Formal Power Series. Journal of Automated
Reasoning 47, 3 (01 Oct 2011), 291–318. https://doi.org/10.1007/
s10817-010-9195-9

[4] Manuel Eberl. 2017. Linear Recurrences. Archive of Formal Proofs (Oct.
2017). http://isa-afp.org/entries/Linear_Recurrences.html, Formal
proof development.

[5] Philippe Flajolet and Robert Sedgewick. 2009. Analytic Combinatorics
(1 ed.). Cambridge University Press, New York, NY, USA.

[6] Philippe Flajolet, Paul Zimmermann, and Bruno Salvy. 1989. Lambda-
Upsilon-Omega: The 1989 cookbook. Research Report RR-1073. INRIA.
https://hal.inria.fr/inria-00075486

[7] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. 1994.
Concrete Mathematics: A Foundation for Computer Science (2nd ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[8] Ondřej Kunčar. 2016. Types, Abstraction and Parametric Polymorphism
in Higher-Order Logic. Ph.D. Dissertation. https://www21.in.tum.de/
~kuncar/documents/kuncar-phdthesis.pdf

[9] Wenda Li. 2017. Count the Number of Complex Roots. Archive of
Formal Proofs (Oct. 2017). http://isa-afp.org/entries/Count_Complex_
Roots.html, Formal proof development.

[10] Wenda Li and Lawrence C. Paulson. 2018. Evaluating Winding Num-
bers and Counting Complex Roots through Cauchy Indices in Isa-
belle/HOL. CoRR abs/1804.03922 (2018). http://arxiv.org/abs/1804.
03922

[11] Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018.
Bounded Expectations: Resource Analysis for Probabilistic Programs.

36

http://www.cs.unipr.it/Publications/
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/s10817-010-9195-9
https://doi.org/10.1007/s10817-010-9195-9
http://isa-afp.org/entries/Linear_Recurrences.html
https://hal.inria.fr/inria-00075486
https://www21.in.tum.de/~kuncar/documents/kuncar-phdthesis.pdf
https://www21.in.tum.de/~kuncar/documents/kuncar-phdthesis.pdf
http://isa-afp.org/entries/Count_Complex_Roots.html
http://isa-afp.org/entries/Count_Complex_Roots.html
http://arxiv.org/abs/1804.03922
http://arxiv.org/abs/1804.03922

Verified Solving and Asymptotics of Linear Recurrences CPP ’19, January 14–15, 2019, Cascais, Portugal

In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018). ACM, New York,
NY, USA, 496–512. https://doi.org/10.1145/3192366.3192394

[12] Joël Ouaknine and James Worrell. 2015. On Linear Recurrence Se-
quences and Loop Termination. ACM SIGLOG News 2, 2 (April 2015),
4–13. https://doi.org/10.1145/2766189.2766191

[13] René Thiemann and Akihisa Yamada. 2015. Algebraic Numbers in
Isabelle/HOL. Archive of Formal Proofs (Dec. 2015). http://isa-afp.org/
entries/Algebraic_Numbers.html Formal proof development.

[14] René Thiemann and Akihisa Yamada. 2016. Algebraic numbers in
Isabelle/HOL. Springer International Publishing, Cham, 391–408. https:

//doi.org/10.1007/978-3-319-43144-4_24
[15] René Thiemann and Akihisa Yamada. 2016. Formalizing Jordan Nor-

mal Forms in Isabelle/HOL. In Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs (CPP 2016). ACM, New
York, NY, USA, 88–99. https://doi.org/10.1145/2854065.2854073

[16] René Thiemann and Akihisa Yamada. 2016. Polynomial Factoriza-
tion. Archive of Formal Proofs (Jan. 2016). http://isa-afp.org/entries/
Polynomial_Factorization.html, Formal proof development.

[17] Bohua Zhan and Maximilian P. L. Haslbeck. 2018. Verifying Asymp-
totic Time Complexity of Imperative Programs in Isabelle. CoRR
abs/1802.01336 (2018). http://arxiv.org/abs/1802.01336

37

https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/2766189.2766191
http://isa-afp.org/entries/Algebraic_Numbers.html
http://isa-afp.org/entries/Algebraic_Numbers.html
https://doi.org/10.1007/978-3-319-43144-4_24
https://doi.org/10.1007/978-3-319-43144-4_24
https://doi.org/10.1145/2854065.2854073
http://isa-afp.org/entries/Polynomial_Factorization.html
http://isa-afp.org/entries/Polynomial_Factorization.html
http://arxiv.org/abs/1802.01336

	1 Introduction
	2 Outline
	3 Preliminaries
	3.1 The Isabelle Proof Assistant
	3.2 Interactive Theorem Proving in a Nutshell
	3.3 The Isabelle Distribution and the Archive of Formal Proofs
	3.4 Notation and Terminology
	3.5 Landau Symbols

	4 Summary of Contributions
	5 Semi-Automatic Real Asymptotics
	5.1 Multiseries
	5.2 Implementation
	5.3 Asymptotic Interval Arithmetic
	5.4 Related Literature
	5.5 Future Work and Outlook

	6 Divide-and-Conquer Recurrences
	6.1 The Formalised Theorem
	6.2 Automation
	6.3 Related Literature

	7 Linear Recurrences
	7.1 Definitions and Scope
	7.2 Implementation
	7.3 Certifying Asymptotic Upper Bounds
	7.4 Related Literature and Applications

	8 Analytic Number Theory
	8.1 Formalised Results
	8.2 Related Literature
	8.3 Further Work

	9 Concluding Remarks
	Bibliography
	Appendix
	A Semi-Automatic Real Asymptotics
	B Divide-and-Conquer Recurrences
	C Analytic Number Theory
	D Linear Recurrences

